
315

C HA PT E R 1 4

The Classified Ad Manager

OVERVIEW

The classified ad manager simulates a classified ad newspaper section,
allowing clients to browse a master database of classified ads using a sim-
ple Web-based user interface. Clients browse any one of several cate-
gories according to keyword or other search parameters such as a price
range or a post date. For example, a client might run a search for Ampeg
Bass Amps priced less than $1,000 and posted within the last week.

The classified ad manager also allows clients to post, modify, and
delete their own ads. Omitting the classified ad intermediaries from the
equation, this application allows clients to directly modify their ads at any
hour and as often as they want. By using the authentication algorithms
discussed in Chapter 9, this application protects the integrity of every
client’s data by refusing to allow anyone except the poster to modify or
delete the ad.

Together, ad searching and ad management create an environment
in which clients buy, sell, and trade their wares with efficiency, privacy,
and ease. The classified ad manager is also a fine example of how you
might reconfigure the database management and searching algorithms
discussed in Chapters 11 and 12 to handle other creative projects.

INSTALLATION AND USAGE

This script should be expanded into a directory from which the Web serv-
er is allowed to execute CGI scripts. Once unarchived, it will expand into
the root directory Classified_ad. Figure 14.1 shows the directory structure
along with a description of how permissions should be set graphically.

Classified_ad, the root directory, must have its permissions set to be
readable and executable by the Web server. It contains two files (class_ad.cgi
and class_ad.setup) and four subdirectories (Databases, Images, Library,
and Session_files).

class_ad.cgi is the main script for the classified ad manager and should
have its permissions set to be readable and executable by the Web server.
The specifics of the script will be discussed in the design discussion.

class_ad.setup is the setup file that class_ad.cgi uses to gather server-
specific information and obtain authentication options. It must have its
permissions set to be readable by the Web server. It is discussed in greater
detail in the “Server-Specific Setup and Options” section.

Databases is a subdirectory containing each of the classified ad data-
bases and their associated setup files as well as the counter and user files.
The Databases subdirectory must be readable writable, and executable
by the Web server. The datafiles, user files, and counter file must be read-
able and writable by the Web server, and the setup files must be readable
by the Web server.

class_ad.counter is a text file used to store unique classified ad data-
base ID numbers. Initially, this file should contain the number 1 on the
first line and nothing else. As time goes by, class_ad.cgi will increment
this number by 1 for every new classified ad posted.

Chapter 14: The Classified Ad Manager

316

Figure 14.1 Directory structure of the classified ad manager.

class_ad.users is the list of users who have been authorized to manipulate
ads in the database. Chapter 9 includes an in-depth discussion of the use
of the user file and the authentication libraries, so they will not be dis-
cussed here.

The datafiles and their associated setup files are discussed in greater
detail in the “Server-Specific Setup and Options” section.

Images is a subdirectory containing the image map used for the
example on the accompanying CD-ROM. The directory must be exe-
cutable by the Web server, and any graphics within it must be readable.

class_ad.counter.(read, write)

class_ad.users.(read, write)

misc_data.files (read)

misc_setup.files (read)

Classified_ad Directory (read, execute)

class_ad.setup (read)

class_ad.cgi (read, execute)

Databases Subdirectory (read, write, execute)

Library Subdirectory (read, execute)

cgi-lib.sol (read)

Authentication Libraries (read)

date.pl (read)

cgi-lib.pl (read)

mail-lib.pl (read)

Images Subdirectory (read, execute)

Session_files Subdirectory (read, write, execute)

Chapter 14: The Classified Ad Manager

317

Library is a subdirectory containing the CGI libraries (discussed in
Chapter 9) that this script needs. The libraries used by this script include
the following: auth-extra-html.pl, auth-extra-lib.pl, auth-lib-fail-html.pl,
auth-lib.pl, auth-server-lib.pl, auth_fail_html.pl, cgi-lib.pl, cgi-lib.sol,
date.pl, and mail-lib.pl. Each of these files must be readable by the Web
server, and the directory itself must be readable and executable.

Session_files is the subdirectory used by the authentication libraries
to store session files (as discussed in Chapter 9) as well as the lock file
and temporary files used by the script during operation. Initially, this
directory should be empty, but if it is made to be readable, writable, and
executable by the Web server, the script will continually add to and prune
this subdirectory as part of its daily usage.

Never create the lock file or temporary file by yourself. As long as
you configure the setup file correctly, the script will create and
delete those files as it needs them.

Server-Specific Setup and Options

class_ad.setup is the setup file that class_ad.cgi uses to gather server-spe-
cific information and obtain authentication options. Within
class_ad.setup, the following variables must be set to their server-specific
values.

$user_file is the location of the file that contains the list of users who
are authorized to use this script.

$counter_file is the path of the file that you are using to keep track
of unique ID numbers. To make deletions and modifications, each item
must have a unique ID number so that this script can determine which
database item to delete. These ID numbers should always be the last field
in any database row.

$session_file_directory is the location of the directory that tem-
porarily holds session files. These session files are used to validate users
and to keep track of their information should we need it.

Chapter 14: The Classified Ad Manager

318

$database_manager_script is the location of class_ad.cgi.

$database_manager_script_url is the URL of class_ad.cgi.

$data_file is the location of the flatfile ASCII text database that is
being managed.

$temp_file is a file that class_ad.cgi uses to temporarily store various
data at different times.

$lock_file is a file that class_ad.cgi uses to make sure that only one
person can modify the database at any given time.

Authentication variables are defined and explained in Chapter 9, so
they will not be discussed here.

The setup file included on the accompanying CD-ROM is shown next
as an example of usage.

$counter_file = "./Databases/class_ad.counter";
$user_file = "./Databases/class_ad.users";
$temp_file = "./Session_files/class_ad.temp";
$lock_file = "./Session_files/class_ad.lockfile";
$session_file_directory = "./Session_files";
$database_manager_script = "./class_ad.cgi";
$database_manager_script_url = "class_ad.cgi";
$auth_lib = "$lib";
$auth_server = "off";
$auth_cgi = "on";
$auth_user_file = "./Databases/class_ad.users";
$auth_alt_user_file = "";
$auth_default_group = "user";
$auth_add_register = "on";
$auth_email_register = "off";
$auth_admin_from_address = "selena\@foobar.com";
$auth_admin_email_address = "selena\@foobar.com";
$auth_session_length = 2;
$auth_session_dir = "./Session_files";
$auth_register_message = "Thanks, you may now log on with

your new username and
password.";

$auth_allow_register = "on";
$auth_allow_search = "on";
$auth_generate_password = "off";
$auth_check_duplicates = "on";
$auth_password_message = "Thanks for applying to our

Chapter 14: The Classified Ad Manager

319

site, your password is";
@auth_extra_fields = ("auth_first_name",

"auth_last_name",
"auth_email");

@auth_extra_desc = ("First Name",
"Last Name",
"Email");

Each datafile follows the format discussed in Chapters 11 through 13, so
we will not repeat the discussion here. The accompanying CD-ROM
includes the following examples, which can be explored separately:
employment.data, housing.data, misc.data, personals.data, and
vehicles.data.

Every datafile comes with an accompanying setup file that defines
each database’s specific features. This chapter’s example of a setup file
explains the server-specific options that must be included with every
datafile. The first example is from vehicles.setup.

$data_file is the location of the datafile associated with each setup file.

$price communicates whether price is one of the possible search
parameters when a client searches this classified database. If this variable
is set to yes, an extra input box will appear on search forms. The script
also requires that you define $price_field_num.

$price_field_num is the location of the database field that contains
the price information. It is essential that you provide the script with this
location, because if you change the fields in the database, the script will
have no idea which field should be compared to the client-defined price
range. When defining this variable, remember that arrays start counting
from zero.

$date_field_num is the array location of the date field. We need to
identify this field to compare and search on date. When defining this
variable, remember that array counting starts at zero.

%FIELD_ARRAY communicates the makeup of the database and specifies
which fields are associated with which header and variable names.
@field_names and @field_values are the ordered keys and values arrays for
%FIELD_ARRAY.

Chapter 14: The Classified Ad Manager

320

@field_names_user_defined defines which fields the clients can submit
when adding a new entry, whereas @field_names_non_user_defined defines
which fields are supplied by the script.

As always, %FORM_COMPONENT_ARRAY describes which database fields are
associated with which types of form input fields so that when we create
forms for adding and searching, each database field will get an appropri-
ate form input type.

Following is the text of vehicles.setup as it appears on the accompa-
nying CD-ROM:

$data_file = "Databases/vehicles.data";
$price = "yes";
$price_field_num = "6";
$date_field_num = "8";
%FIELD_ARRAY = ('Last Name', 'last_name',

'First Name', 'first_name',
'Email', 'email',
'Phone Number', 'phone',
'Category', 'category',
'Location', 'location',
'Price', 'price',
'Your Ad', 'ad',
'Time', 'time',
'Id', 'id');

@field_names = ("Last Name", "First Name", "Email",
"Phone Number", "Category", "Location",
"Price", "Your Ad", "Time", "Id");

@field_names_user_defined = ("Category", "Phone Number",
"Location","Price",
"Your Ad");

@field_names_non_user_defined = ("Last Name",
"First Name", "Email",
"Time", "Id");

@field_values = ("last_name", "first_name", "email",
"phone", "category", "location",
"price", "ad", "time", "id");

Chapter 14: The Classified Ad Manager

321

%FORM_COMPONENT_ARRAY = (
'Last Name', 'text|SIZE = "32" MAXLENGTH = "100"',
'First Name', 'text|SIZE = "32" MAXLENGTH = "100"',
'Email', 'text|SIZE = "32" MAXLENGTH = "100"',
'Phone Number', 'text|SIZE = "32" MAXLENGTH =
"100"',
'Category', 'select|||Automobiles|Auto Parts|T
rucks|Vans|Motorcycles|4X4s|RVs|Mopeds|Water Craft|Air Craft|Other',
'Location', 'text|SIZE = "32" MAXLENGTH = "100"',
'Price', 'text|SIZE = "32" MAXLENGTH = "100"',
'Your Ad', 'textarea|ROWS = "4" COLS = "30"',
'Time', 'invisible',
'Id', 'invisible');

Running the Script

Once you have configured the setup files, created your own databases,
and set the permissions, you can access the classified ad manager with a
hyperlink such as this one:

<A HREF = "http://www.foobar.com/cgi-
bin/Classified_ad/class_ad.cgi">Classified Ad Manager

DESIGN DISCUSSION

The logic of the classified ad manager is depicted in Figure 14.2.

As always, this script begins by calling on the Perl interpreter to print the
HTTP header.

#!/usr/local/bin/perl
print "Content-type: text/html\n\n";

Loading the Supporting Libraries

Next, the $lib variable fixes the path of your current library.

$lib = "Library";

Chapter 14: The Classified Ad Manager

322

Figure 14.2 Script logic for the classified ad manager.

By default, all library files used by this script have been placed in the
Library subdirectory. Eventually, however, the best thing to do is to
put them in your “real” CGI library and reference that path here.

Then the script adds the libraries to the beginning of the @INC array so
that they will be read before any other libraries that may have routines
with the same name.

unshift (@INC, "$lib");

Output Add Form

Add Item

Output Delete Form

Delete Item

Output Modify Form

Modify Item

Output View Form

View Items

Require Setup File

Read/Parse Incoming Form Data

Print out HTTP header

Require Libraries

Output General Category Frontpage

Output Category Specific Frontpage

Chapter 14: The Classified Ad Manager

323

At this point, class_ad.cgi requires the necessary files using CgiRequire,
the subroutine at the end of this script. This subroutine is used so that if
there is a problem with the require, the script will be able to send the
client a meaningful error message.

&CgiRequire("$lib/cgi-lib.pl", "$lib/cgi-lib.sol",
"$lib/auth-lib.pl", "./class_ad.setup",
"$lib/date.pl");

Reading and Parsing Incoming Form Data

Next, the script uses cgi-lib.pl to parse the incoming form data, passing
the subroutine ReadParse (*form_data) so that the variable will come out
as $form_data{'key'} instead of $in{'$key'}.

&ReadParse(*form_data);

Loading the Setup File

Once the form input has been parsed, the script determines which data-
base the client is asking it to display. This script should have been called
with the name of the datafile appended to the URL. For example, we
may have linked to this script using the following hyperlink:

Vehicles Database

In this example, the %form_data associative array contains the variable
database with its associated value vehicles.setup. If there is such a value,
the script assigns that to the variable $setup_file. If the value is empty
and the person called this script without the parameter, the script assigns
basic.setup to $setup_file instead.

if ($form_data{'database'} ne "")
{
$setup_file = $form_data{'database'};
}

Chapter 14: The Classified Ad Manager

324

else
{
$setup_file = "basic.setup";
}

Once the script has determined which setup file to use, it uses CgiRequire
to require the setup file that it was asked for.

&CgiRequire("Databases/$setup_file");

Reformatting Variables

Next, the script reformats the name of the setup file so that it can display
the name of the datafile in a user-friendly way on subsequent pages. If
the user asked to see vehicles.setup, for example, the script should refor-
mat the name to “Vehicles” so that it can later use the reformatted value
to output something like, “Add an Item to the Vehicles Database” instead
of “Add an Item to the vehicles.setup database.”

So, if the script was given a database name, it first splits the name
into a variable for the word name and a variable for the word setup. Thus,
what was once name.setup becomes name and setup. Then the script
assigns the first letter of the name to $first_letter, and the rest of the
word to $rest_of_the_word. So $first_letter equals “n” and
$rest_of_the_word equals “ame.” Then the script turns the $first_letter
into an uppercase letter using the translate (tr) function so that
$first_letter now equals “N” instead of “n.” Finally, the script splices the
variables using (.). That’s a lot of work for such a small change, but it
makes the client GUI much nicer.

if ($form_data{'database'} ne "")
{
($name, $junk) = split (/\./, $form_data{'database'});
$first_letter = substr($name,0,1);
$rest_of_the_word = substr($name,1);
$first_letter =~ tr/a-z/A-Z/;
$database = $first_letter . $rest_of_the_word;
}

Chapter 14: The Classified Ad Manager

325

The script also defines the $session_file variable if one is coming in as
form data. We will talk more about session file information later.

if ($form_data{'session_file'} ne "")
{
$session_file = $form_data{'session_file'};
}

Displaying the General Category Front Page

Now the script is ready to print the front page. This, however, will happen in
only two cases. First, the script will output the front page if no database has
been defined in the incoming form data ($form_data{'database'} eq "") or
(||) if the script is being asked specifically to return to the front page
($form_data{'return_to_frontpage'} ne ""). Second, the script outputs the
front page if no values have yet been assigned to ($ENV{'CONTENT_LENGTH'} eq
""). If CONTENT_LENGTH is equal to zero, it means that this script is being
accessed from an outside hyperlink rather from a script-generated HTML
page.

if (($form_data{'database'} eq "" ||
$form_data{'return_to_frontpage'} ne "")
&&
($ENV{'CONTENT_LENGTH'} eq ""))||

($form.data{‘return.to.frontpage’}ne""))
{

The routine shown next prints the basic front page. However, notice that
the image map hyperlinks reference this script with

?database=xxx&session_file=$session_file.

It’s important to always remember to pass this information so that the
client does not get lost. As discussed in Chapter 9, the session file is used to
maintain state. By passing the name of the session file from HTML page to
HTML page, this script ensures that it will “remember” who the client is.

print <<"end_of_html";
<HTML>

Chapter 14: The Classified Ad Manager

326

<HEAD>
<TITLE>The Classified Ad Manager</TITLE>
</HEAD>
<BODY BGCOLOR = "FFFFFF" TEXT = "000000">
<CENTER>

<P>

<IMG SRC = "/ Graphics/classified.gif"
ISMAP USEMAP = "#map" BORDER = "0">
<MAP NAME = "map">
<AREA COORDS = "11,18 191,53" HREF = "$datab
ase_manager_script_url?database=employment.setup&session_file=$ses-
sion_file">
<AREA COORDS = "9,
71 192,107" HREF =
"$database_manager_script_url?database=housing.setup&session_file=$ses
sion_file">
<AREA COORDS = "11
,124 191,160" HREF =
"$database_manager_script_url?database=misc.setup&session_file=$ses-
sion_file">
<AREA COORDS = "28
2,18 463,54" HREF =
"$database_manager_script_url?database=personals.setup&session_file=$s
ession_file">
<AREA COORDS = "28
4,72 463,107" HREF =
"$database_manager_script_url?database=vehicles.setup&session_file=$se
ssion_file">
<AREA COORDS = "28
4,125 465,160" HREF = "mailto:selena\@eff.org">4,125 </MAP>
<P>
<A HREF = "$database_manager_script_url?database=employment.setup&ses-
sion_file=$session_file">Employment
| <A HREF = "$database_manager_script_url?database=housing.setup&ses-
sion_file=$session_file">Housing
| <A HREF = "$database_manager_script_url?database=misc.setup&ses-
sion_file=$session_file">Misc. For Sale
| <A HREF =
"$database_manager_script_url?database=personals.setup&session_file=$s
ession_file">Personals
| <A HREF = "$database_manager_script_url?database=vehicles.setup&ses-
sion_file=$session_file">Vehicles
</CENTER></BODY></HTML>
end_of_html
exit;
}

Chapter 14: The Classified Ad Manager

327

On the Web, the general category front page looks like Figure 14.3.

Figure 14.3 General category front page.

We have included the cheesy little graphic as an example in the
Images subdirectory on the accompanying CD-ROM.

Displaying the Specific Category Front Page

If the client has clicked on one of the links from the front page image
map, the client has submitted a request via GET rather than POST (which is
used for all the forms throughout the rest of this script). If the request
method is GET, the script knows that the client must be asking for the
database-specific front page.

if ($ENV{'REQUEST_METHOD'} eq "GET")
{

Chapter 14: The Classified Ad Manager

328

In response, the script prints the database-specific front page of the
requested database, displaying several options.

print <<"end_of_html";
<HTML>
<HEAD>
<TITLE>The Classified Ad Manager - $database</TITLE>
</HEAD>
<BODY>
<CENTER>
<H2>The Classified Ad Manager - $database</H2>
</CENTER>
<BLOCKQUOTE>
Welcome to the Classified Ad Manager...Feel free to enter your ads
here and use the modification options if your information
changes...good luck.
</BLOCKQUOTE>
<FORM METHOD = "post" ACTION = "$database_manager_script_url">
<CENTER>
<INPUT TYPE = "hidden" NAME = "database"

VALUE = "$form_data{'database'}">
<INPUT TYPE = "hidden" NAME = "session_file"

VALUE = "$session_file">
<INPUT TYPE = "submit" NAME = "search_form_view"

VALUE = "View $database Ads">
<INPUT TYPE = "submit" NAME = "add_form"

VALUE = "Submit an Ad">
<INPUT TYPE = "submit" NAME = "search_form_delete"

VALUE = "Delete Your Ad">
<INPUT TYPE = "submit" NAME = "search_form_modify"

VALUE = "Modify Your Ad">
<INPUT TYPE = "submit" NAME = "return_to_frontpage"

VALUE = "Return to Front page">
end_of_html
exit;
}

Here is where we use the $database variable that we worked so hard
to create. Also, notice that we are passing database and session IDs
as hidden variables.

On the Web, the category-specific front page might look like Figure 14.4.

Chapter 14: The Classified Ad Manager

329

Figure 14.4 Category-specific front page.

Displaying the Classified Ad Add Form

Next, the script checks to see whether the client has asked for the form
to add an entry to the database. If so, it logs the client in to be assigned a
session ID number that the script can pass through the authentication
routine if required. It is one thing to view the database; it is quite anoth-
er to modify it!

if ($form_data{'add_form'} ne "")
{

To authenticate a client, the script passes the subroutine GetSessionInfo,
which is contained in auth-lib.pl, three parameters: the $session_file
value, which will be nothing if one has not yet been set, the name of this
script so that it can provide links; and the associative array of form data
we got from cgi-lib.pl. This process is discussed in greater depth in
Chapter 9.

($session_file, $session_username, $session_group,
$session_first_name, $session_last_name, $session_email) =
&GetSessionInfo($session_file, $database_manager_script_url,
*form_data);

Chapter 14: The Classified Ad Manager

330

Because we also want to keep track of the date when new entries are
made, the script also uses the get_date subroutine at the end of this script
to get the current date.

&get_date;

Next, the script prints the header of the add form.

print <<"end_of_html";
<HTML><HEAD><TITLE>Add a Classified Ad - $database</TITLE></HEAD>
<BODY>
<CENTER><H2>Add a Classified Ad - $database</H2></CENTER>
<FORM METHOD = "post" ACTION = "$database_manager_script_url">
<CENTER>
end_of_html

It also creates an input form using the subroutine create_input_form at
the end of this script. This subroutine creates an input field for each of
the fields in the database and presents it in table format.

&create_input_form;

Finally, the script prints the page footers as it did for the front page.

print <<"end_of_html";
</TABLE><CENTER><P>
<INPUT TYPE = "hidden" NAME = "first_name"

VALUE = "$session_first_name">
<INPUT TYPE = "hidden" NAME = "last_name"

VALUE = "$session_last_name">
<INPUT TYPE = "hidden" NAME = "email"

VALUE = "$session_email">
<INPUT TYPE = "hidden" NAME = "time" VALUE = "$date">
<INPUT TYPE = "hidden" NAME = "database"

VALUE = "$form_data{'database'}">
<INPUT TYPE = "hidden" NAME = "session_file"

VALUE = "$session_file">
<INPUT TYPE = "submit" NAME = "submit_addition"

VALUE = "Submit Addition">
<INPUT TYPE = "submit" NAME = "return_to_frontpage"

VALUE = "Return to Front page">
</CENTER></FORM></BODY></HTML>
end_of_html

Chapter 14: The Classified Ad Manager

331

exit;
}

Figure 14.5 shows the Add Form for the vehicles database that comes on
the accompanying CD-ROM.

Figure 14.5 The classified ads add form.

Displaying the Classified Ad Delete Form

If the client wants to delete an ad, the script sends a form so that the
client can specify which database item to delete.

Chapter 14: The Classified Ad Manager

332

if ($form_data{'search_form_delete'} ne "")
{

First, the script passes the client through the security check using the
GetSessionInfo subroutine in cgi-lib.sol.

($session_file, $session_username, $session_group,
$session_first_name, $session_last_name, $session_email) =
&GetSessionInfo($session_file, $database_manager_script_url,
*form_data);

Before it can begin deleting, however, the script must find out which
item to delete. To do that, the script needs some information from the
client—specifically, which item to delete—so it must be able to tell the
client which items are available to delete. However, the script cannot sim-
ply output all the items in the database; the Web browser might run out
of memory. Instead, the client gives the script one or more search terms
so that it can put together a reasonably sized list from which the client
can choose.

print <<"end_of_html";
<HTML>
<HEAD>
<TITLE>Query Database for Deletion - $database</TITLE>
</HEAD>
<BODY>
<CENTER>
<H2>Query Database for Deletion - $database</H2>
</CENTER>
<FORM METHOD = "post"

ACTION = "$database_manager_script_url">
<CENTER>
end_of_html

The script creates an input form using the subroutine create_input_form
at the end of this script. The client uses this form to input keywords.

&create_input_form;

Chapter 14: The Classified Ad Manager

333

Then the script adds a form <input> tag for “exact match” and the page
footer.

print <<"end_of_html";
<TR>
<TH>Exact Match?</TH><TD>
<INPUT TYPE = "checkbox" NAME = "exact_match" CHECKED>
</TD></TR></TABLE><P>
<INPUT TYPE = "hidden" NAME = "database"

VALUE = "$form_data{'database'}">
<INPUT TYPE = "hidden" NAME = "session_file"

VALUE = "$session_file">
<INPUT TYPE = "submit" NAME = "search_database_delete"

VALUE = "Submit Search Term">
<P><BLOCKQUOTE>To get a full view of database, submit \"no\" keywords.
But beware, if there are too many items in your database, you will
exceed the memory of your browser.
</CENTER></FORM></BODY></HTML>
end_of_html
exit;
}

On the Web, the delete search form looks like the form shown in Figure
14.5 except for the delete-specific information.

Searching for Items to Delete

The script also needs a routine to accept the client-defined search
term(s) and search the database, presenting a dynamically generated list
of “hits.”

if ($form_data{'search_database_delete'} ne "")
{

The process begins with a security check.

($session_file, $session_username, $session_group
$session_first_name, $session_last_name, $session_email)
= &GetSessionInfo($session_file,
$database_manager_script_url, *form_data);

Next, the script prints the page header.

Chapter 14: The Classified Ad Manager

334

print <<"end_of_html";
<HTML>
<HEAD>
<TITLE>Deleting an Item from the Database -
$database</TITLE>
</HEAD>
<BODY>
<CENTER>
<H2>Deleting an Item from the Database - $database</H2>
</CENTER>
<FORM METHOD = "post"

ACTION = "$database_manager_script_url">
<CENTER>
end_of_html

Then the script begins searching the database by using the subroutine
search_database, which can be found at the end of this script. The script
passes to search_database one parameter, delete, so that the subroutine
will know how to output the results of the search.

&search_database ("delete");

Finally, the script prints a list of hits in a table format. $search_results,
returned from the subroutine search_database, contains all the hits in the
form of table rows. The client then chooses which item to delete and
deletes it.

print "<TABLE BORDER = \"1\" CELLPADDING = \"4\"
CELLSPACING = \"4\">";

print &table_header ("Delete
Item");
print &table_header (@field_names);
print "</TR>\n";
print "$search_results";

print <<"end_of_html";
</TABLE><P>
<INPUT TYPE = "hidden" NAME = "database"

VALUE = "$form_data{'database'}">
<INPUT TYPE = "hidden" NAME = "session_file"

VALUE = "$session_file">
<INPUT TYPE = "submit" NAME = "submit_deletion"

VALUE = "Submit Deletion">
<INPUT TYPE = "submit" NAME = "return_to_frontpage"

VALUE = "Return to Front page">

Chapter 14: The Classified Ad Manager

335

</CENTER></FORM></BODY></HTML>
end_of_html
exit;
}

On the Web, the deletion screen looks similar to Figure 14.6.

Figure 14.6 Deletion screen example.

Displaying the Modify Item Form

Next, the script repeats the same process, this time for modification.

if ($form_data{'search_form_modify'} ne "")
{

As usual, the client is authenticated first.

($session_file, $session_username, $session_group,
$session_first_name, $session_last_name, $session_email) =

Chapter 14: The Classified Ad Manager

336

&GetSessionInfo($session_file,
$database_manager_script_url, *form_data);

Then the usual header is printed.

print <<"end_of_html";
<HTML>
<HEAD>
<TITLE>Query Database for Modification -
$database</TITLE>
</HEAD>
<BODY>
<CENTER>
<H2>Query Database for Modification - $database</H2>
</CENTER>
<FORM METHOD = "post" ACTION = "$database_manager_script_url">
<CENTER>
end_of_html

Next, the script creates the input form using the subroutine create_
input_form at the end of this script.

&create_input_form;

Finally, the script adds the HTML footer as it did for delete.

print <<"end_of_html";
<TH>Exact Match?</TH><TD>
<INPUT TYPE = "checkbox" NAME = "exact_match" CHECKED>
</TD></TR></TABLE><P>
<INPUT TYPE = "hidden" NAME = "database"

VALUE = "$form_data{'database'}">
<INPUT TYPE = "hidden" NAME = "session_file"

VALUE = "$session_file">
<INPUT TYPE = "submit" NAME = "search_database_modify"

VALUE = "Submit Search Term">
<P><BLOCKQUOTE>To get a full view of database, submit \"no\" keywords.
But beware, if there are too many items in your database, you will
exceed the memory of your browser.
</CENTER></FORM></BODY></HTML>
end_of_html
exit;
}

Chapter 14: The Classified Ad Manager

337

On the Web, the modify search form looks exactly like Figure 14.5 except
for the modification-specific information in the header.

Searching the Database for Items to Modify

As it did for delete, the script prints the results of the query for modifica-
tion after a security check.

if ($form_data{'search_database_modify'} ne "")
{
($session_file, $session_username, $session_group,
$session_first_name, $session_last_name, $session_email)=
&GetSessionInfo($session_file, $database_manager_script_url,
*form_data);

First, the script prints the page header.

print <<"end_of_html";
<HTML>
<HEAD>
<TITLE>Modifying an Item in the Database -
$database</TITLE>
</HEAD>
<BODY>
<CENTER>
<H2>Modifying an Item in the Database - $database</H2>
</CENTER>
<FORM METHOD = "post"

ACTION = "$database_manager_script_url">
<CENTER>
end_of_html

Then the script begins searching the database using the subroutine
search_database at the end of the script as it did for delete.

&search_database ("modify");

Chapter 14: The Classified Ad Manager

338

Next, it prints a list of hits in a table format. You will recall that
$search_results, returned from the subroutine search_database, contains
all the hits in the form of table rows.

print "<TABLE BORDER = \"1\" CELLPADDING = \"4\"
CELLSPACING = \"4\">";

print "<TH>Modify
Item</TH>";
print &table_header (@field_names);
print "</TR>\n";
print "$search_results";
print "</TABLE><P>";

Furthermore, the script uses the subroutine &create_input_form to print
the same form that was used for the “Add an Item” form. The client can
now specify an item to modify in the table and then type new informa-
tion to update the database fields.

&create_input_form;

Finally, the script prints the usual footer.

print <<"end_of_html";
</TABLE><CENTER><P>
<INPUT TYPE = "hidden" NAME = "database"

VALUE = "$form_data{'database'}">
<INPUT TYPE = "hidden" NAME = "session_file"

VALUE = "$session_file">
<INPUT TYPE = "submit" NAME = "submit_modification"

VALUE = "Submit Modification">
<INPUT TYPE = "submit" NAME = "return_to_frontpage"

VALUE = "Return to Front page">
</CENTER></FORM></BODY></HTML>
end_of_html
exit;
}

On the Web, the modification screen looks like Figure 14.7.

Chapter 14: The Classified Ad Manager

339

Figure 14.7 Modification screen example.

Displaying the View Form

The next routines, beginning with the printing of the page header, allow
a client to view the database.

if ($form_data{'search_form_view'} ne "")
{
print <<"end_of_html";
<HTML>
<HEAD>
<TITLE>Classified Ad Search Engine - $database</TITLE>
</HEAD>

Chapter 14: The Classified Ad Manager

340

<BODY>
<CENTER>
<H2>Classified Ad Search Engine - $database</H2>
</CENTER>
<FORM METHOD = "post"

ACTION = "$database_manager_script_url">
<CENTER>
<TABLE BORDER = "1" CELLSPACING = "4"

CELLPADDING = "4">
end_of_html

Next, the script creates an HTML form so that the client can submit key-
words with which to search. For each field in the database—except for
database ID and time fields, which are set by this script and not by the
administrator—the script generates an input field. It gets the list of data-
base fields from the @field_names array defined in the setup file.

However, to build the form, the script must send a few things: the
name of the field, the variable to be associated with that name, and the
type of input we are going to use (TEXTAREA, TEXT, SELECT). We
don’t want to send it the price or time of submission, though, because we
will create new input boxes for these items based on maximum and mini-
mum acceptable prices and posting date. Thus, these two fields must be
removed from the array before it is passed to the build_input_form sub-
routine.

$id = pop (@field_names);
$time = pop (@field_names);

Pay close attention to this if you are going to add other search fea-
tures. Here is the first occurrence of a special customizing area.

Then the script uses build_input_form in cgi-lib.sol to create a form input
field for every client-defined database field.

foreach $field_name (@field_names)
{
if ($field_name ne "Price")
{
if ($field_name ne "Time of Submission")

Chapter 14: The Classified Ad Manager

341

{
print &build_input_form("$FIELD_ARRAY{$field_name}",
"$FORM_COMPONENT_ARRAY{$field_name}",
$field_name);

}
} # End of if ($field_name ne "Price")

} # End of foreach $field_name (@field_names)

Next, it adds the special new search boxes. In the setup file for each data-
base is a variable called $price. If this variable is set to yes, it means that
you want the client to be able to search this type of database by price.

if ($price eq "yes")
{
print <<"end_of_html";
<TH>Highest Acceptable Price</TH>
<TD><INPUT TYPE = "text" NAME = "price.high"

SIZE = "35" MAXLENGTH = "35">
</TD></TR><TR>
<TH>Lowest Acceptable Price</TH>
<TD><INPUT TYPE = "text" NAME = "price.low" SIZE = "35"

MAXLENGTH = "35" VALUE = "0.00">
</TD></TR><TR>
end_of_html
}

Clients are also allowed to search by database row age. The script prints
this second input field and finishes with a form input for exact match
and the form, body, and ending HTML tags.

print <<"end_of_html";
<TH>Posted within how many days</TH>
<TD><INPUT TYPE = "text" NAME = "num_days_ago"

SIZE = "35" MAXLENGTH = "35" VALUE = "30">
</TD></TR><TR>
<TH>Exact Match?</TH>
<TD><INPUT TYPE = "checkbox" NAME = "exact_match"

CHECKED></TD>
</TR></TABLE><P>
<INPUT TYPE = "hidden" NAME = "database"

VALUE = "$form_data{'database'}">
<INPUT TYPE = "hidden" NAME = "session_file"

VALUE = "$session_file">
<INPUT TYPE = "submit" NAME = "search_database_view"

Chapter 14: The Classified Ad Manager

342

VALUE = "Submit Search Parameters">
</CENTER></FORM></BODY></HTML>
end_of_html
exit;
}

On the Web, the view form looks like Figure 14.8.

Figure 14.8 View form.

Searching the Classified Ad Database for Items to View

Next, the script searches the database for items to view. All this is exactly
the same as we’ve done before.

Chapter 14: The Classified Ad Manager

343

if ($form_data{'search_database_view'} ne "")
{
print <<"end_of_html";
<HTML>
<HEAD>
<TITLE>Viewing the Database - $database</TITLE>
</HEAD>
<BODY>
<CENTER>
<H2>Viewing the Database - $database</H2>
</CENTER>
<FORM METHOD = "post"

ACTION = "$database_manager_script_url">
<CENTER>
end_of_html

This time, the script sends the subroutine a parameter of none, because
we do not want any radio buttons in the resulting table. There will be no
items to select, because all the client wants is to view the database.

&search_database ("none");

Finally, the script prints a list of hits in table format.

print <<"end_of_html";
<TABLE BORDER = "1" CELLPADDING = "4" CELLSPACING = "4">
end_of_html

print &table_header (@field_names);
print "</TR>\n";
print "$search_results";

print <<"end_of_html";
</TABLE><CENTER><P>
<INPUT TYPE = "hidden" NAME = "database"

VALUE = "$form_data{'database'}">
<INPUT TYPE = "hidden" NAME = "session_file"

VALUE = "$session_file">
<INPUT TYPE = "submit" NAME = "search_form_view"

VALUE = "View $database Ads">
<INPUT TYPE = "submit" NAME = "add_form"

VALUE = "Submit an Ad">
<INPUT TYPE = "submit" NAME = "search_form_delete"

VALUE = "Delete Your Ad">
<INPUT TYPE = "submit" NAME = "search_form_modify"

Chapter 14: The Classified Ad Manager

344

VALUE = "Modify Your Ad">
<INPUT TYPE = "submit" NAME = "return_to_frontpage"

VALUE = "Return to Front page">
</CENTER></FORM></BODY></HTML>
end_of_html
exit;
}

On the Web, the search results for a view might look like Figure 14.9.

Figure 14.9 Viewing the database.

Adding an Item to the Classified Ad Database

The following routines direct the script when a client asks to add a new
item to the database.

if ($form_data{'submit_addition'} ne "")
{

First, the client is passed through security.

Chapter 14: The Classified Ad Manager

345

($session_file, $session_username, $session_group,
$session_first_name, $session_last_name, $session_email) =
&GetSessionInfo($session_file, $database_manager_script_url,
*form_data);

In the case of an addition, the script assigns the new database entry a
unique database ID number. It accesses the counter file, which keeps
track of the last database ID number used. The counter subroutine, locat-
ed in cgi-lib.sol, sends us a new number (incremented by 1) and then
adjusts the counter file appropriately. The counter routine takes one
parameter: the location of the counter file.

&counter($counter_file);

Then the ID value is slipped into the %form_data associative array so that
the following routine will add it to the new database row along with all
the other information.

$form_data{'id'} = "$item_number";

Next, the script formats the incoming form data the way the database is
set up to understand (delimited by | and ending with a newline). It also
makes sure to substitute new lines and line breaks with the correspond-
ing HTML so that they will be displayed correctly.

The script also takes out any occurrences of |. If entered as part of
the data, this pipe character would destroy our ability to read the data-
base, because the script would interpret it as a field delimiter.

foreach $field (@field_names)
{
$value = "$FIELD_ARRAY{$field}";
$form_data{$value} =~ s/\n/
/g;
$form_data{$value} =~ s/\r\r/<P>/g;
$form_data{$value} =~ s/\|/~~/g;

Also, the script formats the price entered by the client so that it can later be
compared numerically. The script removes any dollar signs ($) or commas
(,) as well as any words such as “or best offer” ([a-zA-Z]) or spaces (\s).

Chapter 14: The Classified Ad Manager

346

if ($field eq "Price" ||
$field eq "Cost (per month for rentals")

{
$form_data{$value} =~ s/\$//g;
$form_data{$value} =~ s/[a-zA-Z]//g;
$form_data{$value} =~ s/,//g;
$form_data{$value} =~ s/\s//g;
}

To improve the table presentation, the script changes any blank fields
with <CENTER>-</CENTER> so that when the table is displayed, it won’t have
an ugly, empty-cell look.

if ($form_data{$value} eq "")
{
$form_data{$value} = "<CENTER>-</CENTER>";
}

Finally, the script creates and then appends $new_row with the value, thus
creating a database row such as field1|field2|field3|. When all the
fields have been spoken for, the script takes off the final pipe symbol and
the database row is complete.

$new_row .= "$form_data{$value}|";
} # End of foreach $field (@field_names)
chop $new_row; take out the last |

Next, the script creates a lock file so that it can edit the database file. If
two people are trying to edit the locked datafile at one time, one person
will not destroy the modifications made by the other person. The lock
file is created using the subroutine GetFileLock in cgi-lib.sol, passing it
one parameter: the location of the lock file used by this program.

&GetFileLock ("$lock_file");

Once the database is protected, the script opens it for appending (>>)
and writes to it the value of $new_row.

open (DATABASE, ">>$data_file") ||
&open_error($data_file);

Chapter 14: The Classified Ad Manager

347

print DATABASE "$new_row";
print DATABASE "\n";

Then, after the change has been made, the script closes the database and
deletes the lock file so that others may access the datafile.

close (DATABASE);
&ReleaseFileLock ("$lock_file");

Finally, the script sends a note telling the client that the item was added
to the database.

print <<"end_of_html";
<HTML>
<HEAD>
<TITLE>Item Added to the Database - $database</TITLE>
</HEAD>
<BODY>
<CENTER>
<H2>Item Added to the Database - $database</H2>
</CENTER>
<FORM METHOD = "post"

ACTION = "$database_manager_script_url">
<CENTER>
<INPUT TYPE = "hidden" NAME = "database"

VALUE = "$form_data{'database'}">
<INPUT TYPE = "hidden" NAME = "session_file"

VALUE = "$session_file">
<INPUT TYPE = "submit" NAME = "search_form_view"

VALUE = "View $database Ads">
<INPUT TYPE = "submit" NAME = "add_form"

VALUE = "Submit an Ad">
<INPUT TYPE = "submit" NAME = "search_form_delete"

VALUE = "Delete Your Ad">
<INPUT TYPE = "submit" NAME = "search_form_modify"

VALUE = "Modify Your Ad">
<INPUT TYPE = "submit" NAME = "return_to_frontpage"

VALUE = "Return to Front page">
</CENTER></FORM></BODY></HTML>
end_of_html
exit;
}

Figure 14.10 shows the client response on the Web.

Chapter 14: The Classified Ad Manager

348

Figure 14.10 Client response for an addition.

Deleting an Item from the Classified Ad Database

Next, the script checks to see whether it is being called on to make a
deletion.

if ($form_data{'submit_deletion'} ne "")
{

If it is, it passes the client through security.

($session_file, $session_username, $session_group,
$session_first_name, $session_last_name, $session_email) =
&GetSessionInfo($session_file, $database_manager_script_url,
*form_data);

Then it opens the database and reads it one line at a time.

open (DATABASE, "$data_file") ||
&open_error($data_file);

while (<DATABASE>)
{

Chapter 14: The Classified Ad Manager

349

If the script finds a comment line, it adds it directly to $new_data, a vari-
able used to store all the nondeleted database rows.

if ($_ =~ /^COMMENT:/)
{
$new_data .= "$_";
}

If it is not a comment row, however, the script splits the row by database
fields and pops the item ID, which should be the last field in the row.

else
{
@fields = split (/\|/, $_);
$item_id = pop(@fields);

If the item ID does not match the one submitted by the client, the script
adds the whole row to $new_data. If it is the same, however, the database
row will not be added to $new_data and thus will be deleted by default.

unless ($item_id eq "$form_data{'delete'}")
{
$new_data .= "$_";
}
} # End of else
} # End of while (<DATABASE>)

Next, the script closes the database, opens a lock file as it did for the add
routine, and creates a temporary file that contains all the rows we
dumped into $new_data.

close (DATABASE);
&GetFileLock ("$lock_file");
open (TEMPFILE, ">$temp_file") ||

&open_error($temp_file);
print TEMPFILE "$new_data";
close (TEMPFILE);

It then copies the temporary file over the old database file, thereby delet-
ing the entry, because it was not added to the temporary file. Then the
script releases the lock file so that someone else can use it.

Chapter 14: The Classified Ad Manager

350

rename ($temp_file, $data_file);
&ReleaseFileLock ("$lock_file");

Finally, it prints the usual footer.

print <<"end_of_html";
<HTML>
<HEAD>
<TITLE>Your Item has been deleted - $database</TITLE>
</HEAD>
<BODY>
<CENTER>
<H2>Your Item has been deleted - $database</H2>
</CENTER>
<FORM METHOD = "post"

ACTION = "$database_manager_script_url">
<CENTER>
<INPUT TYPE = "hidden" NAME = "database"

VALUE = "$form_data{'database'}">
<INPUT TYPE = "hidden" NAME = "session_file"

VALUE = "$session_file">
<INPUT TYPE = "submit" NAME = "search_form_view"

VALUE = "View $database Ads">
<INPUT TYPE = "submit" NAME = "add_form"

VALUE = "Submit an Ad">
<INPUT TYPE = "submit" NAME = "search_form_delete"

VALUE = "Delete Your Ad">
<INPUT TYPE = "submit" NAME = "search_form_modify"

VALUE = "Modify Your Ad">
<INPUT TYPE = "submit" NAME = "return_to_frontpage"

VALUE = "Return to Front page">
</CENTER></FORM></BODY></HTML>
end_of_html
exit;
}

On the Web, the client response looks like Figure 14.10 except for the
delete-specific header.

Modifying an Item in the Database

Last, but not least, the script takes care of any modifications asked of it.

if ($form_data{'submit_modification'} ne "")
{

Chapter 14: The Classified Ad Manager

351

As usual, the script begins with a security check.

($session_file, $session_username, $session_group,
$session_first_name, $session_last_name, $session_email) =
&GetSessionInfo($session_file, $database_manager_script_url,
*form_data);

Next, the script makes sure that the client clicked one of the radio but-
tons on the modification table; without that information, it would not be
able to know which item to modify. $form_data{'modify'} will be equal to
the database ID number of the item if one of the radio buttons has been
selected.

if ($form_data{'modify'} eq "")
{
print <<"end_of_html";
<HTML>
<HEAD>
<TITLE>Modifying an Item in the Database -
$database</TITLE>
</HEAD>
<BODY>
<CENTER>
<H2>Modifying an Item in the Database - $database</H2>
</CENTER>
<BLOCKQUOTE>
I'm sorry, I was not able to modify the database because none of the
radio buttons on the table was selected so I was not sure which item
to modify. Would you please make sure that you select an item "and"
fill in the new information. Please press the back button and try
again. Thanks.
</BLOCKQUOTE>
end_of_html
exit;
}

Next, the script opens the database and reads through it one line at a
time, adding the comment lines to $new_data.

open (DATABASE, "$data_file") ||
&open_error($data_file);

while (<DATABASE>)
{

Chapter 14: The Classified Ad Manager

352

if ($_ =~ /^COMMENT:/)
{
$new_data .= "$_";
}

If the line is not a comment line, however, the script pops the item_id as it did
for deletion. But this time, it also pushes the item_id back into the array after
it has read it, because we still want to have the ID in the row when the rou-
tine is finished. We’ll need the complete row for the final modified row.

else
{
@fields = split (/\|/, $_);
$item_id = pop(@fields);
push (@fields, $item_id);

If the item ID from the database equals the one submitted by the client,
the script creates a new array, @old_fields, equal to the current fields in
the row.

if ($item_id eq "$form_data{'modify'}")
{
@old_fields = @fields;
}

If the two values are not equal, however, the script adds the row to
$new_data. By the end, the script will have copied every line in the data-
base to $new_data except for the item that the client wanted modified.
Fortunately, the script saved that line in the @old_fields array.

else
{
$new_data .= "$_";
}
} # End of else
} # End of while (<DATABASE>)
close (DATABASE);

To add the modified line to the database, the script begins by initializing
a few variables. $new_line will contain the modified database row, and
$counter will be used to count database fields in the row.

Chapter 14: The Classified Ad Manager

353

$counter = 0;
$new_line = "";

Then the script goes through each of the fields in @field_values, which is
a list containing each of the database fields as defined in the setup file.

until ($counter >= @field_values)
{

For each field, the script initializes the variable $value and sets it equal to
an incremented field according to the current value of counter.

$value = "";
$value = "$field_values[$counter]";

If that field, as represented by the form input, is equal to zero (the client
did not wish to modify that field), the script takes the old value (as stored
in the @old_fields array) and adds it to $new_line, appending a pipe (|) at
the end to denote the end of the field.

if ($form_data{$value} eq "")
{
$new_line .= "$old_fields[$counter]|";
}

On the other hand, if the user wanted to edit that field, the script for-
mats the incoming data as it did for the add routine and adds the new
data to $new_line.

else
{
$form_data{$value} =~ s/\n/
/g;
$form_data{$value} =~ s/\r\r/<P>/g;
$form_data{$value} =~ s/\|/~~/g;

if ($field eq "Price" ||
$field eq "Cost (per month for rentals")

{
$form_data{$value} =~ s/\$//g;
$form_data{$value} =~ s/[a-zA-Z]//g;
$form_data{$value} =~ s/,//g;

Chapter 14: The Classified Ad Manager

354

$form_data{$value} =~ s/\s//g;
}

if ($form_data{$value} eq "")
{
$form_data{$value} = "<CENTER>-</CENTER>";
}

$new_line .= "$form_data{$value}|";
} # End of else
$counter++;
} # End of until ($counter >= @field_values)
chop $new_line; Take off the final |

Next, the script opens the temporary file and prints the $new_data lines as
well as the modified database line contained in $new_line. Then it closes
the temporary file, copies the temporary file over the old database file,
and releases the lock.

&GetFileLock ("$lock_file");
open (TEMPFILE, ">$temp_file") || &open_error($temp_file);
print TEMPFILE "$new_data";
print TEMPFILE "$new_line";
close (TEMPFILE);
rename ($temp_file, $data_file);
&ReleaseFileLock ("$lock_file");

Finally, the script prints the usual footer.

print <<"end_of_html";
<HTML>
<HEAD>
<TITLE>Your Item has been Modified - $database</TITLE>
</HEAD>
<BODY>
<CENTER>
<H2>Your Item has been Modified - $database</H2>
</CENTER>
<FORM METHOD = "post"

ACTION = "$database_manager_script_url">
<CENTER>
<INPUT TYPE = "hidden" NAME = "database"

VALUE = "$form_data{'database'}">
<INPUT TYPE = "hidden" NAME = "session_file"

Chapter 14: The Classified Ad Manager

355

VALUE = "$session_file">
<INPUT TYPE = "submit" NAME = "search_form_view"

VALUE = "View $database Ads">
<INPUT TYPE = "submit" NAME = "add_form"

VALUE = "Submit an Ad">
<INPUT TYPE = "submit" NAME = "search_form_delete"

VALUE = "Delete Your Ad">
<INPUT TYPE = "submit" NAME = "search_form_modify"

VALUE = "Modify Your Ad">
<INPUT TYPE = "submit" NAME = "return_to_frontpage"

VALUE = "Return to Front page">
</CENTER></FORM></BODY></HTML>
end_of_html
exit;
} # End of if ($form_data{'submit_modification'} ne "")

On the Web, the client response looks like Figure 14.10 except for the
modify-specific header.

The CgiRequire Subroutine

CgiRequire checks to see whether the file that the script is trying to require
exists and is readable by it. This subroutine provides developers with an
informative error message when they’re attempting to debug the scripts.

sub CgiRequire
{

The @require_files array is first defined as a local array and is filled with
the filenames sent from the main routine.

local (@require_files) = @_;

CgiRequire then checks to see whether the files exist and are readable by
the script. If so, the files are required.

foreach $file (@require_files)
{
if (-e "$file" && -r "$file")
{
require "$file";
}

Chapter 14: The Classified Ad Manager

356

If there is a problem, however, CgiRequire sends an error message that
will help the developer isolate the problem.

else
{
print "I'm sorry, I was not able to open
$file. Would you please check to make sure
that you gave me a valid filename and that the
permissions on $file are set to allow me
access?";
exit;
}
} # End of foreach $file (@require_files)
} # End of sub require

The create_input_form Subroutine

The create_input_form subroutine is used to generate the input forms that
the client will use to input new data for an addition or keywords for a search.

sub create_input_form
{

First, the table header is printed.

print "<TABLE BORDER = \"1\" CELLPADDING = \"4\"
CELLSPACING = \"4\">";

Then the subroutine is used to create an HTML form. In the end, we
must have one input field for each field in the database (except the data-
base ID field, which is set by this script and not by the client).

The subroutine gets the list of database fields from the @field_names
array defined in the setup file and, for every element in the array, creates
an input field. To do so, it sends the build_input_form subroutine in cgi-
lib.sol a few parameters: the name of the field, the variable to be associated
with that name, and the type of input we are going to use (TEXTAREA,
TEXT, SELECT).

foreach $field_name (@field_names_user_defined)
{

Chapter 14: The Classified Ad Manager

357

$variable_name = $FIELD_ARRAY{$field_name};
$form_type = $FORM_COMPONENT_ARRAY{$field_name};
local ($input_form);
$input_form = "";
$input_form .= "<TR>\n";
$input_form .= &table_header ("$field_name");
$input_form .= "<TD>";
$input_form .= &make_form_row ("$field_name",

"$variable_name",
"$form_type");

$input_form .= "</TD></TR>\n";
print"$input_form";
}
} # End of sub create_input_form

The search_database Subroutine

The search_database subroutine is used to search the database for key-
word matches.

sub search_database
{

First, the local variable $submit_type is set equal to the value sent to us
from the main routine. This will be either modify, delete, or, in the case
of a view search, none.

local($submit_type) = @_;

Next, the subroutine opens the database file and begins checking each
field in every row against the keywords submitted, disregarding comment
lines (COMMENT:).

open (DATABASE, "$data_file")||
&open_error($data_file);

while (<DATABASE>)
{
$database_row = $_;
unless ($database_row =~ /^COMMENT:/)
{

Chapter 14: The Classified Ad Manager

358

$did_we_find_a_match is initially set equal to no to make sure that it has
not been initialized elsewhere. The $did_we_find_a_match variable is used
to keep track of whether a hit was made based on the client-submitted
keyword. If a match was found, the variable will equal yes.

$did_we_find_a_match = "no";

Next, the subroutine splits the database row into the @row array and cre-
ates some variables based on values specified in the setup file.

@row = split(/\|/,$database_row);
$row_price = "$row[$price_field_num]";
$row_date = "$row[$date_field_num]";
$last_name_field_number = "0";
$row_last_name = "$row[$last_name_field_number]";
($month,$day,$year) =

split (/-/, $row[$date_field_num]);

It then uses the date.pl library to convert the row date into a Julian date
that it uses to compare to today’s date and generate the number of days
ago that the row was posted.

$julian_day = &jday($month,$day,$year);
($today_month,$today_day,$today_year) = split (/-/,

&get_date);
$today = &jday($today_month,$today_day,$today_year);
$posted_days_ago = ($today - $julian_day);

Next, search_database checks to see whether the client asked us to weed
out by price or age. By the way, the if tests will pass if the user did not
submit any pruning value.

if (($row_price <= $form_data{'price.high'} ||
$form_data{'price.high'} eq "")

&&
($row_price >= $form_data{'price.low'} ||
$form_data{'price.low'} eq "")
&&
($form_data{'num_days_ago'} >= $posted_days_ago ||

$form_data{'num_days_ago'} eq ""))
{

Chapter 14: The Classified Ad Manager

359

Then, for each key in the %form_data associative array, the script sets
$field_number equal to –1. We do this because both the pesky “submit” and
“exact match” key/value pairs may come in along with the rest of the form
data. We do not want the script to search the database for those fields,
because they don’t exist! By setting $field_number equal to –1, the script
will be able to filter such non–field keys with the following routine:

foreach $form_data_key (keys %form_data)
{
$field_number = -1;

The subroutine first goes through the fields in the database (@field_val-
ues), checking to see whether there is a corresponding value coming in
from the form ($form_data_key). However, because arrays are counted
from zero rather than from 1 and because @field_values gives us a count
of the array starting at 1, the script offsets the counter by 1.

Thus, if the form “key” submitted is indeed a field in the database,
$field_number ($y - 1) will be its actual location in the array.

for ($y = 1; $y <= @field_values; $y++)
{
if ($form_data_key eq @field_values[$y-1] &&

$form_data{"$form_data_key"} ne "")
{
$field_number = $y - 1;
last; # Exit out of the for loop because we have

verified field
}

} # End of for ($y = 1; $y <= @field_values; $y++)

Then the script checks the submitted value against the value in the data-
base. However, the script must make sure that the value is not on or sub-
mit keyword. If $field_number is still equal to –1, it means that the script
did not match the form data key against an actual database field, so it
should try the next key. Otherwise, it knows that it has a valid field to
check against. Again, $field_number must be less than or equal to –1,
because the array starts from zero.

if ($field_number > -1)
{

Chapter 14: The Classified Ad Manager

360

Next, the script performs the match, checking the database information
against the submitted keyword for that field. First, it performs an exact
match test. If $form_data{'exact_match'} is not equal to on, it means that
the exact match check box was not checked. The match is straightfor-
ward. If the keyword string ($form_data{"$form_data_key"}) matches (=~) a
string in the field that the subroutine is searching ($row[$field_number])
with case insensitivity off (/i), then the script knows it got a hit.

if ($form_data{'exact_match'} ne "on")
{
if ($row[$field_number] =~

/$form_data{$form_data_key}/i)
{

However, before we get too excited, the script must make sure either that
the client is an administrator (and is allowed to see all rows) or that the
row the client got a hit on is actually a row that the client initially
entered; it also must make sure that this is not a general view request.
The first two if tests are obvious. The reason for the last test is that if the
client is asking to view, we don’t care whether the client entered the row.
We want him or her to see everything. Only in the case of modifying and
deleting do we want the extra level of filtering.

if (($session_group eq "admin" ||
$row_last_name eq "$session_last_name") &&
$submit_type ne "none")

{
$did_we_find_a_match = "yes";
last; # Exit out of ForEach keys in FormData

}

The subroutine also handles a general view request. It is basically the
same routine, but it covers whatever was left by the previous if test.

if ($submit_type eq "none")
{
$did_we_find_a_match = "yes";
last; # Exit out of ForEach keys in FormData
}
} # End of if (@row[$field_number]....
} # End of if ($form_data{'exact_match'} eq "")

Chapter 14: The Classified Ad Manager

361

On the other hand, the client may have clicked the exact match check
box. This time, the script proceeds with an exact match using the \b
switch, keeping it case-insensitive (/i). The same $did_we_find_a_match
setting and if tests apply as before.

elsif ($row[$field_number] =~
/\b$form_data{$form_data_key}\b/i)
{
if (($session_group eq "admin" ||

$row_last_name eq "$session_last_name") &&
$submit_type ne "none")

{
$did_we_find_a_match = "yes";
last; # Exit out of ForEach keys in FormData
}

if ($submit_type eq "none")
{
$did_we_find_a_match = "yes";
last; # Exit out of ForEach keys in FormData
}
} # End of elsif ($row[$field_number]....
} # End of if ($field_number > -1)
} # End of foreach $form_data_key (keys %form_data)

If the script finds a match ($did_we_find_a_match equals yes), it needs to
create a table row for the output. $search_results is used to collect all the
hits formatted as table rows for the output. A hit adds each of the fields
of the database row to a table row. The subroutine also creates a variable
called $hit_counter to remind it that it got a hit. If $hit_counter is never
set to 1, the script knows that it must tell the client that her keyword
turned up nothing.

if ($did_we_find_a_match eq "yes")
{
$search_results .= "<TR>";
$hit_counter = "1";

Then the subroutine gathers the database ID row number so that it can
use it and then puts it back into the @row array.

$db_id_number = pop (@row);
push (@row, $db_id_number);

Chapter 14: The Classified Ad Manager

362

The subroutine then begins creating the database rows created by the
HTML. If this is not a view and if it is a row that satisfies security, the
script creates a first column for the radio button that the client will use to
select a database row to modify or delete.

if (($session_group eq "admin" ||
$row_last_name eq "$session_last_name")

&&
($submit_type ne "none"))
{
$search_results .= "<TD ALIGN = \"center\">\n";
$search_results .= "<INPUT TYPE = \"radio\"

NAME = \"$submit_type\"
VALUE = \"$db_id_number\">";

$search_results .= "\n</TD>\n";
} # End of if ($session_group eq "admin" ||....

Then the subroutine fills in the HTML database table row. In the case of
viewing, it adds every row, and in the case of modification and deletion, it
gives them only the appropriate rows.

foreach $field (@row)
{
if ($submit_type eq "none")
{
$search_results .= "<TD>$field</TD>\n";
}
elsif ($row_last_name eq "$session_last_name" ||

$session_group eq "admin")
{
$search_results .= "<TD>$field</TD>\n";
}
} # End of foreach $field (@row)...
} # End of if ($did_we_find_a_match eq "yes")....
} # End of if (($row_price <=....
} # End of unless ($database_row =~ /^COMMENT:/)
} # End of while (<DATABASE>)
close (DATABASE);

Next, the subroutine provides an algorithm to handle the possibility that a
client-submitted keyword may turn up nothing in the search. At this point,
if $hit_counter is not equal to 1, it means that the search did not turn up a
hit. Thus, the script sends a note to the client with a link to the search form.

Chapter 14: The Classified Ad Manager

363

We use a hyperlink rather than a submit button, because we want
the client to access this script without a CONTENT_LENGTH so that the
form will pop up.

Also, the script exits the routine here if no hits were found. We do not
want it to print an empty table.

if ($hit_counter ne "1")
{
print "I'm sorry, I was unable to find a match for the

keyword(s) that you specified in a database row
that you are authorized to see. Feel free to
try again";

print "</CENTER></BODY></HTML>";
exit;
}
} # End of sub search_database

The get_date Subroutine

The get_date subroutine is used to get the current date of each added
classified ad database row.

sub get_date
{

@days = ('Sunday', 'Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday', 'Saturday');

@months = ('January', 'February', 'March', 'April',
'May', 'June', 'July', 'August',
'September', 'October', 'November',
'December');

The localtime command is used to get the current time, splitting it into
variables.

($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
localtime(time);

Chapter 14: The Classified Ad Manager

364

Then the variables are formatted and assigned to the final $date variable.

if ($hour < 10) { $hour = "0$hour"; }
if ($min < 10) { $min = "0$min"; }
if ($sec < 10) { $sec = "0$sec"; }
$date = "$mon-$mday-19$year";
}

Chapter 14: The Classified Ad Manager

365

