CHAPTER 14

The Classified Ad Manager

OVERVIEW

The classified ad manager simulates a classified ad newspaper section,
allowing clients to browse a master database of classified ads using a sim-
ple Web-based user interface. Clients browse any one of several cate-
gories according to keyword or other search parameters such as a price
range or a post date. For example, a client might run a search for Ampeg
Bass Amps priced less than $1,000 and posted within the last week.

The classified ad manager also allows clients to post, modify, and
delete their own ads. Omitting the classified ad intermediaries from the
equation, this application allows clients to directly modify their ads at any
hour and as often as they want. By using the authentication algorithms
discussed in Chapter 9, this application protects the integrity of every
client’s data by refusing to allow anyone except the poster to modify or
delete the ad.

315

Chapter 14: The Classified Ad Manager

Together, ad searching and ad management create an environment
in which clients buy, sell, and trade their wares with efficiency, privacy,
and ease. The classified ad manager is also a fine example of how you
might reconfigure the database management and searching algorithms
discussed in Chapters 11 and 12 to handle other creative projects.

INSTALLATION AND USAGE

This script should be expanded into a directory from which the Web serv-
er is allowed to execute CGI scripts. Once unarchived, it will expand into
the root directory Classified_ad. Figure 14.1 shows the directory structure
along with a description of how permissions should be set graphically.

Classified_ad, the root directory, must have its permissions set to be
readable and executable by the Web server. It contains two files (class_ad.cgi
and class_ad.setup) and four subdirectories (Databases, Images, Library,
and Session_files).

class_ad.cgi is the main script for the classified ad manager and should
have its permissions set to be readable and executable by the Web server.
The specifics of the script will be discussed in the design discussion.

class_ad.setup is the setup file that class_ad.cgi uses to gather server-
specific information and obtain authentication options. It must have its
permissions set to be readable by the Web server. It is discussed in greater
detail in the “Server-Specific Setup and Options” section.

Databases is a subdirectory containing each of the classified ad data-
bases and their associated setup files as well as the counter and user files.
The Databases subdirectory must be readable writable, and executable
by the Web server. The datafiles, user files, and counter file must be read-
able and writable by the Web server, and the setup files must be readable
by the Web server.

class_ad.counter is a text file used to store unique classified ad data-
base ID numbers. Initially, this file should contain the number 1 on the
first line and nothing else. As time goes by, class_ad.cgi will increment
this number by 1 for every new classified ad posted.

316

Chapter 14: The Classified Ad Manager

| Classified_ad Directory (read, execute)

4| class_ad.setup (read)

4| class_ad.cgi (read, execute)

! Databases Subdirectory (read, write, execute)

| class_ad.counter.(read, write)

| class_ad.users.(read, write)

| misc_data.files (read)

_| misc_setup.files (read)

4| Session_files Subdirectory (read, write, execute) |

4| Library Subdirectory (read, execute)

| cgi-lib.sol (read)

| cgi-lib.pl (read)

_l Authentication Libraries (read) |

—| date.pl (read)

| mail-lib.pl (read)

4| Images Subdirectory (read, execute)

Figure 14.1 Directory structure of the classified ad manager.

class_ad.users is the list of users who have been authorized to manipulate
ads in the database. Chapter 9 includes an in-depth discussion of the use

of the user file and the authentication libraries, so they will not be dis-

cussed here.

The datafiles and their associated setup files are discussed in greater
detail in the “Server-Specific Setup and Options” section.

Images is a subdirectory containing the image map used for the
example on the accompanying CD-ROM. The directory must be exe-
cutable by the Web server, and any graphics within it must be readable.

317

318

Chapter 14: The Classified Ad Manager

Library is a subdirectory containing the CGI libraries (discussed in
Chapter 9) that this script needs. The libraries used by this script include
the following: auth-extra-html.pl, auth-extra-lib.pl, auth-lib-fail-html.pl,
auth-lib.pl, auth-server-lib.pl, auth_fail_html.pl, cgi-lib.pl, cgi-lib.sol,
date.pl, and mail-lib.pl. Each of these files must be readable by the Web
server, and the directory itself must be readable and executable.

Session_files is the subdirectory used by the authentication libraries
to store session files (as discussed in Chapter 9) as well as the lock file
and temporary files used by the script during operation. Initially, this
directory should be empty, but if it is made to be readable, writable, and
executable by the Web server, the script will continually add to and prune
this subdirectory as part of its daily usage.

Never create the lock file or temporary file by yourself. As long as
Q you configure the setup file correctly, the script will create and

delete those files as it needs them.
NOTE

Server-Specific Setup and Options

class_ad.setup is the setup file that class_ad.cgi uses to gather server-spe-
cific information and obtain authentication options. Within
class_ad.setup, the following variables must be set to their server-specific
values.

$user_file is the location of the file that contains the list of users who
are authorized to use this script.

$counter_file is the path of the file that you are using to keep track
of unique ID numbers. To make deletions and modifications, each item
must have a unique ID number so that this script can determine which
database item to delete. These ID numbers should always be the last field
in any database row.

$session_file_directory is the location of the directory that tem-
porarily holds session files. These session files are used to validate users
and to keep track of their information should we need it.

Chapter 14: The Classified Ad Manager

$dat abase_manager _scri pt is the location of class_ad.cgi.
$dat abase_manager _script_url is the URL of class_ad.cgi.

$data_file is the location of the flatfile ASCII text database that is
being managed.

$tenp_file is a file that class_ad.cgi uses to temporarily store various
data at different times.

$l ock_file is a file that class_ad.cgi uses to make sure that only one
person can modify the database at any given time.

Authentication variables are defined and explained in Chapter 9, so
they will not be discussed here.

The setup file included on the accompanying CD-ROM is shown next
as an example of usage.

$counter_file = "./Databases/cl ass_ad. counter";
$user _file = "./Databases/cl ass_ad. users";
$tenp_file = "./Session_files/class_ad.tenp";
$lock file ="./Session_files/class_ad.|ockfile";
$session_file directory = "./Session_files";
$dat abase_nanager _script = "./class_ad.cgi";
$dat abase_manager _script_url = "class_ad.cgi ";
$auth_ lib = "$lib";

$aut h_server = "of f";

$auth_cgi = "on";

$aut h_user _file = "./Databases/cl ass_ad. users";

$auth_alt_user file = ;

$aut h_def aul t _group = "user";

$aut h_add_regi ster = "on";

$auth_emai | _register = "of f";

$aut h_adni n_from address = "sel ena\ @oobar. cont;

$aut h_adm n_enai | _address = "sel ena\ @oobar. conf;

$aut h_session_length = 2;

$aut h_session_dir = "./Session_files";

$aut h_regi ster_nessage = "Thanks, you may now | og on with
your new usernare and
password. ";

$auth_al | ow regi ster = "on";

$aut h_al | ow search = "on";

$aut h_gener ate_password = "of f";

$aut h_check_dupl i cates = "on";

$aut h_passwor d_nmessage = "Thanks for applying to our

319

Chapter 14: The Classified Ad Manager

site, your password is";
@uth_extra_fields = ("auth_first_nane",
"auth_l ast _nare",
"auth_email");
@ut h_extra_desc = ("First Name",
"Last Nane",
"BEmail");

Each datafile follows the format discussed in Chapters 11 through 13, so
we will not repeat the discussion here. The accompanying CD-ROM
includes the following examples, which can be explored separately:
employment.data, housing.data, misc.data, personals.data, and
vehicles.data.

Every datafile comes with an accompanying setup file that defines
each database’s specific features. This chapter’s example of a setup file
explains the server-specific options that must be included with every
datafile. The first example is from vehicles.setup.

$data_fil e is the location of the datafile associated with each setup file.

$pri ce communicates whether price is one of the possible search
parameters when a client searches this classified database. If this variable
is set to yes, an extra input box will appear on search forms. The script
also requires that you define $pri ce_fi el d_num

$price_field_numis the location of the database field that contains
the price information. It is essential that you provide the script with this
location, because if you change the fields in the database, the script will
have no idea which field should be compared to the client-defined price
range. When defining this variable, remember that arrays start counting
from zero.

$date_fiel d_numis the array location of the date field. We need to
identify this field to compare and search on date. When defining this
variable, remember that array counting starts at zero.

% ELD_ARRAY communicates the makeup of the database and specifies
which fields are associated with which header and variable names.
@i el d_nanes and @i el d_val ues are the ordered keys and values arrays for
% ELD_ARRAY.

320

Chapter 14: The Classified Ad Manager

@i el d_nanes_user _defi ned defines which fields the clients can submit
when adding a new entry, whereas @i el d_nanes_non_user _defi ned defines

which fields are supplied by the script.

As always, %CRM COVPONENT_ARRAY describes which database fields are
associated with which types of form input fields so that when we create
forms for adding and searching, each database field will get an appropri-

ate form input type.

Following is the text of vehicles.setup as it appears on the accompa-

nying CD-ROM:
$data file = "Databases/ vehicl es. data";
$price = "yes";

$price_field num= "6";
$date field_num= "8";

%1 ELD ARRAY = ('Last Nanme', 'last_nane',
"First Name', 'first_name',
"Brail', 'email"',

' Phone Nunber', ' phone',

'Category', 'category',

'Location', 'location',

"Price', 'price',

"Your Ad', 'ad',

'Time', 'tine',

“1d, tid');

@ield_names = ("Last Name", "First Name", "Email",

"Phone Number", "Category", "Location",
"Price", "Your Ad", "Tine", "ld");

@i el d_nanmes_user _defined = ("Category", "Phone Nunber",
"Location","Price",
"Your Ad");

@i el d_nanes_non_user _defined = ("Last Nane",
"First Nane", "Emil",

"Tine", "l1d");
@ield_values = ("last_nane", "first_name", "enail",
"phone", "category", "location",
"price", "ad", "time", "id");

321

Chapter 14: The Classified Ad Manager

%&ORM COVPONENT_ARRAY = (
'Last Name', 'text|SIZE = "32" MAXLENGTH = "100"',
"First Name', 'text|SIZE = "32" MAXLENGTH = "100"",

"Email', 'text|SIZE = "32" MAXLENGTH = "100"',
' Phone Number', 'text|SIZE = "32" NMAXLENGIH =
“100""

'Category', 'select|]|]|Autonmobiles|Auto Parts|T

rucks| Vans| Mot or cycl es| 4X4s| Rvs| Mopeds| Water Craft|Air Gaft| Gher',
"Location', 'text|SIZE = "32" NMAXLENGTH = "100"',

"Price', 'text|SIZE = "32" MAXLENGIH = "100"',

"Your Ad', 'textarea] RO = "4" OOLS = "30"',

"Tinme', 'invisible',

"Id, 'invisible');

Running the Script

Once you have configured the setup files, created your own databases,
and set the permissions, you can access the classified ad manager with a
hyperlink such as this one:

<A HREF = "http://ww. f oobar. conl cgi -
bi n/ A assi fied_ad/cl ass_ad. cgi ">0 assi fi ed Ad Manager </ A>

DESIGN DISCUSSION

The logic of the classified ad manager is depicted in Figure 14.2.

As always, this script begins by calling on the Perl interpreter to print the
HTTP header.

#!'/usr/ 1 ocal / bi n/ perl
print "Content-type: text/htm\n\n";

Loading the Supporting Libraries

Next, the $li b variable fixes the path of your current library.

$lib ="Library";

322

Chapter 14: The Classified Ad Manager

| Print out HTTP header |

Y
| Require Libraries |

Y
|Read/Parse Incoming Form Data|

A4
| Require Setup File |

Y
|Output General Category Frontpage|

Y

Output Category Specific Frontpage

NN

| Output Add Form | | Output Delete Form| |Output Modify Form| | Output View Form|

| Addwem | | Deleteitem | | Modifyltem | | Viewitems |

Figure 14.2 Script logic for the classified ad manager.

By default, all library files used by this script have been placed in the
Library subdirectory. Eventually, however, the best thing to do is to
put them in your “real” CGl library and reference that path here.

NOTE

Then the script adds the libraries to the beginning of the @NC array so
that they will be read before any other libraries that may have routines
with the same name.

unshift (@NC "$lib");

323

Chapter 14: The Classified Ad Manager

At this point, class_ad.cgi requi res the necessary files using Ggi Require,
the subroutine at the end of this script. This subroutine is used so that if
there is a problem with the require, the script will be able to send the
client a meaningful error message.

&Cgi Require("$lib/cgi-lib.pl", "$lib/cgi-lib.sol",
"$lib/auth-1ib.pl", "./class_ad. setup",
"$lib/date. pl");

Reading and Parsing Incoming Form Data

Next, the script uses cgi-lib.pl to parse the incoming form data, passing
the subroutine ReadParse (*formdata) so that the variable will come out
as $f orm dat a{ ' key' } instead of $i n{' $key'}.

&ReadPar se(*formdat a);

Loading the Setup File

Once the form input has been parsed, the script determines which data-
base the client is asking it to display. This script should have been called
with the name of the datafile appended to the URL. For example, we
may have linked to this script using the following hyperlink:

Vehi cl es Dat abase</ a>

In this example, the % orm data associative array contains the variable
dat abase with its associated value vehicles.setup. If there is such a value,
the script assigns that to the variable $setup_file. If the value is empty
and the person called this script without the parameter, the script assigns
basic.setup to $set up_fil e instead.

if ($formdata{' database'} ne "")

{

$setup_file = $form dat a{' dat abase' };

}

324

Chapter 14: The Classified Ad Manager

el se

$setup_file = "basic. setup”;

}

Once the script has determined which setup file to use, it uses Ggi Require
to requi re the setup file that it was asked for.

&Cgi Requi r e(" Dat abases/ $set up_file");

Reformatting Variables

Next, the script reformats the name of the setup file so that it can display
the name of the datafile in a user-friendly way on subsequent pages. If
the user asked to see vehicles.setup, for example, the script should refor-
mat the name to “Vehicles” so that it can later use the reformatted value
to output something like, “Add an Item to the Vehicles Database” instead
of “Add an Item to the vehicles.setup database.”

So, if the script was given a database name, it first splits the name
into a variable for the word name and a variable for the word setup. Thus,
what was once name.setup becomes nane and setup. Then the script
assigns the first letter of the name to $first_letter, and the rest of the
word to $rest_of _the_word. So $first_letter equals “n” and
$rest_of _the_word equals “ame.” Then the script turns the $first_letter
into an uppercase letter using the translate (tr) function so that
$first_letter now equals “N” instead of “n.” Finally, the script splices the
variables using (.). That’s a lot of work for such a small change, but it

makes the client GUI much nicer.

if ($formdata{'database'} ne "")

{

($narme, $junk) = split (/\./, $formdataf' database'});
$first letter = substr($nane, 0, 1);

$rest _of _the word = substr($nane, 1);

$first_letter =~ trla-z/ A Z;

$dat abase = $first_letter . $rest_of the word;

}

325

326

Chapter 14: The Classified Ad Manager

The script also defines the $session_fil e variable if one is coming in as
form data. We will talk more about session file information later.

if ($formdata{' session file'} ne "")

{

$session_file = $formdata{' session_file'};

}

Displaying the General Category Front Page

Now the script is ready to print the front page. This, however, will happen in
only two cases. First, the script will output the front page if no database has
been defined in the incoming form data ($f or m dat a{' dat abase'} eq "") or
(I'1') if the script is being asked specifically to return to the front page
($formdata{' return_to_frontpage'} ne ""). Second, the script outputs the
front page if no values have yet been assigned to ($ENV{* GONTENT_LENGTH } eq
"*). If CONTENT_LENGTH is equal to zero, it means that this script is being
accessed from an outside hyperlink rather from a scriptgenerated HTML

page.

if (($formdata{' database'} eq "" ||
$formdata{' return_to frontpage'} ne "")
&&
($ENV{" CONTENT_LENGTH } eq "")) ||
($formdata{‘return.to.frontpage }ne""))

{

The routine shown next prints the basic front page. However, notice that
the image map hyperlinks reference this script with

?dat abase=xxx&sessi on_fi | e=$sessi on_file.

It’s important to always remember to pass this information so that the
client does not get lost. As discussed in Chapter 9, the session file is used to
maintain state. By passing the name of the session file from HTML page to
HTML page, this script ensures that it will “remember” who the client is.

print <<"end_of _htm";
<HTM_>

Chapter 14: The Classified Ad Manager

<HEAD>
<TI TLE>The d assified Ad Manager </ Tl TLE>
</ HEAD>
<BCDY BAOOLCR = "FFFFFF" TEXT = "000000" >
<CENTER>
<IM5 SRC = "/ Gaphics/class_ad_title.gif">
<P>

<IM5 SRC = "/ QGaphics/classified.gif"
| SMAP USEMVAP = "#map" BORDER = "0"></ A>
<MAP NAME = "nmap">
<AREA OOCRDS = "11, 18 191,53" HREF = "$dat ab
ase_manager _scri pt _ur | ?dat abase=enpl oynent . set up&sessi on_fil e=$ses-
sion_file">
<AREA OOCRDS = "9,
71 192, 107" HREF =
"$dat abase_manager _scri pt _ur| ?dat abase=housi ng. set up&sessi on_fi | e=$ses
sion_file">
<AREA OOCRDS = "11
,124 191, 160" HREF =
"$dat abase_manager _scri pt _url ?dat abase=m sc. set up&sessi on_fil e=$ses-
sion_file">
<AREA OOCRDS = "28
2,18 463, 54" HREF =
"$dat abase_manager _scri pt _ur| ?dat abase=per sonal s. set up&sessi on_fil e=$s
ession_file">
<AREA OOCRDS = "28
4,72 463, 107" HREF =
"$dat abase_manager _scri pt _url ?dat abase=vehi cl es. set up&sessi on_fi |l e=$se
ssion_file">
<AREA OOCRDS = "28
4,125 465, 160" HREF = "mail to: sel ena\ @f f. org">4, 125 </ NAP>
<P>
<A HREF = "$dat abase_manager _scri pt _ur| ?dat abase=enpl oynent . set up&ses-
sion_fil e=$sessi on_fil e">Empl oynent </ A>
| <A HREF = "$dat abase_manager _scri pt _ur| ?dat abase=housi ng. set up&ses-
sion_fil e=$sessi on_fil e">Housi ng</ A>
| <A HREF = "$dat abase_manager _scri pt _url ?dat abase=ni sc. set up&ses-
sion file=$session file">Msc. For Sal e</ A>
| <A HREF =
"$dat abase_manager _scri pt _ur| ?dat abase=per sonal s. set up&sessi on_fil e=$s
ession_fil e">Personal s</ A>
| <A HREF = "$dat abase_manager _scri pt _ur| ?dat abase=vehi cl es. set up&ses-
sion_fil e=$session_fil e">Vehi cl es</ A>
</ CENTER></ BODY></ HTM_>
end_of _htm
exit;

}

327

Chapter 14: The Classified Ad Manager

On the Web, the general category front page looks like Figure 14.3.

Feticaps |1k Clarnied B B arssger |

| |n] @||z|8[8) o)

Selena Sol's
Classified Ads

Engiogment | Hewmng | B For Sake | Pardonads | Wekalss

L S~

Figure 14.3 General category front page.

Images subdirectory on the accompanying CD-ROM.

We have included the cheesy little graphic as an example in the
4

NOTE

Displaying the Specific Category Front Page

If the client has clicked on one of the links from the front page image
map, the client has submitted a request via GET rather than PCST (which is
used for all the forms throughout the rest of this script). If the request
method is GET, the script knows that the client must be asking for the
database-specific front page.

if ($ENV{' REQUEST METHOD } eq "GET")

328

Chapter 14: The Classified Ad Manager

In response, the script prints the database-specific front page of the
requested database, displaying several options.

print <<"end_of _htm";

<HTM_>

<HEAD>

<TI TLE>The d assi fi ed Ad Manager - $dat abase</ Tl TLE>

</ HEAD>

<BCDY>

<CENTER>

<H2>The d assified Ad Manager - $dat abase</ H2>

</ CENTER>

<BLOCKQUOTE>

Wl cone to the dassified Ad Manager...Feel free to enter your ads

here and use the nodification options if your infornation

changes. . . good | uck.

</ BLOCKQUOTE>

<FORM METHCD = "post" ACTI ON = "$dat abase_nanager _scri pt_url ">

<CENTER>

<INPUT TYPE = "hi dden" NAME = "dat abase"
VALUE = "$f orm dat a{' dat abase' }">

<I NPUT TYPE = "hi dden" NAME = "session file"
VALUE = "$session_file">

<INPUT TYPE = "submt" NAME = "search_formview
VALLE = "Vi ew $dat abase Ads">

<INPUT TYPE = "submt" NAME = "add_forn¥
VALLE = "Submt an Ad">

<INPUT TYPE = "subnit" NAME = "search_formdel ete"
VALUE = "Del ete Your Ad">

<INPUT TYPE = "subnmit" NAMVE = "search_f ormnodi fy"
VALUE = "Modi fy Your Ad">

<INPUT TYPE = "subnit" NAME = "return_to_front page"
VALLE = "Return to Front page">

end_of _htm

exit;

Here is where we use the $dat abase variable that we worked so hard
to create. Also, notice that we are passing database and session IDs
as hidden variables.

NOTE

On the Web, the category-specific front page might look like Figure 14.4.

329

Chapter 14: The Classified Ad Manager

whe Mefscopss - | The Lisssithed Ad Manager - Wshso es

EW Edb Mew GSo Bookmedks Dpioas [DNedion Sndow Help

= | w
Bk e

alz|&l®

AR

L Goie . eww oobarcomog-oy Classifed_adicass_sd cgiidaishase-vehices seplee &) N
waers Naw? | WhersCool? | Desiraions | HanZesch | Fucple | Somwans |

| ¥

The Classified Ad Manager - Vehicles

Wekcome to the Classfied Ad Masagsr | Fesl fres fo saier pour ads Rere and we the sodfoaton
opbions d wour eformaabion changes. . good hick

View Viehicles Ads | SubmitanAd | Delete Your Ad |
Modify Your Ad | Fewn o Fronpage |

Figure 14.4 Category-specific front page.

Displaying the Classified Ad Add Form

Next, the script checks to see whether the client has asked for the form
to add an entry to the database. If so, it logs the client in to be assigned a
session ID number that the script can pass through the authentication
routine if required. It is one thing to view the database; it is quite anoth-
er to modify it!

if ($formdata{' add_form} ne "")
{

To authenticate a client, the script passes the subroutine Get Sessi onl nf o,
which is contained in auth-lib.pl, three parameters: the $session_file
value, which will be nothing if one has not yet been set, the name of this
script so that it can provide links; and the associative array of form data
we got from cgi-lib.pl. This process is discussed in greater depth in
Chapter 9.

($session_file, $session_usernane, $session_group,
$session_first_name, $session_|ast_name, $session_enail) =
&Get Sessi onl nfo($sessi on_fil e, $dat abase_nanager _script_url,
*formdata);

330

Chapter 14: The Classified Ad Manager

Because we also want to keep track of the date when new entries are
made, the script also uses the get _dat e subroutine at the end of this script
to get the current date.

&get _dat e;

Next, the script prints the header of the add form.

print <<"end_of _htm";

<HTM_.><HEAD><TI TLE>Add a O assified Ad - $dat abase</ Tl TLE></ HEAD>
<BCDY>

<CENTER><H2>Add a d assified Ad - $dat abase</ H2></ CENTER>

<FORM METHCD = "post" ACTI ON = "$dat abase_nanager _scri pt _url ">
<CENTER>

end_of _htn

It also creates an input form using the subroutine create_i nput _f orm at
the end of this script. This subroutine creates an input field for each of
the fields in the database and presents it in table format.

&create_input_form

Finally, the script prints the page footers as it did for the front page.

print <<"end_of _htm";
</ TABLE><CENTER><P>
<INPUT TYPE = "hidden" NAME = "first_name"
VALUE = "$session_first_nane">
<I NPUT TYPE = "hi dden" NAME = "l ast _nane"
VALLE = "$session_| ast _nane" >
<INPUT TYPE = "hidden" NAME = "emai | "
VALUE = "$session_enai |l ">
<INPUT TYPE = "hi dden" NAME = "time" VALUE = "$date">
<INPUT TYPE = "hi dden" NAME = "dat abase"
VALUE = "$f orm dat a{' dat abase' }">
<INPUT TYPE = "hi dden" NAME = "session file"
VALUE = "$session_file">
<INPUT TYPE = "subnmit" NAME = "submt_addition"
VALUE = "Subnit Addition">
<INPUT TYPE = "submt" NAME = "return_to_front page"
VALUE = "Return to Front page">
</ CENTER></ FORW»</ BCDY></ HTM_>
end_of htm

331

Chapter 14: The Classified Ad Manager

exit;

}

Figure 14.5 shows the Add Form for the vehicles database that comes on
the accompanying CD-ROM.

i e o bas comybegibn /O aeelied_ad e _edog [

Add a Classified Ad - Vehicles

Categiay ||I|.lu1'nrr.-|.u|:n i

Phare Nursher ||45.rmm

Furlmnk
Pricw ||!|ﬁ'.'l

'86 Maccon Fuzukl i

Laocatien

Yo Al

X I .I

Figure 14.5 The classified ads add form.

Displaying the Classified Ad Delete Form

If the client wants to delete an ad, the script sends a form so that the
client can specify which database item to delete.

332

Chapter 14: The Classified Ad Manager

if ($formdata{' search_formdelete'} ne "")

{

First, the script passes the client through the security check using the
Get Sessi onl nf o subroutine in cgi-lib.sol.

($session_file, $session_usernane, $session_group,
$session_first_name, $session_| ast_name, $session_enail) =
&Cet Sessi onl nf o($sessi on_file, $dat abase_manager _script_url,
*formdata);

Before it can begin deleting, however, the script must find out which
item to delete. To do that, the script needs some information from the
client—specifically, which item to delete—so it must be able to tell the
client which items are available to delete. However, the script cannot sim-
ply output all the items in the database; the Web browser might run out
of memory. Instead, the client gives the script one or more search terms
so that it can put together a reasonably sized list from which the client
can choose.

print <<"end_of _htm";
<HTM_>
<HEAD>
<TlI TLE>Query Database for Del etion - $dat abase</ Tl TLE>
</ HEAD>
<BCDY>
<CENTER>
<H2>Query Database for Del etion - $dat abase</ H2>
</ CENTER>
<FCRM METHCD = "post "
ACTI CN = "$dat abase_nanager _script_url ">
<CENTER>
end of _htm

The script creates an input form using the subroutine create_i nput_form
at the end of this script. The client uses this form to input keywords.

&create_input_form

333

334

Chapter 14: The Classified Ad Manager

Then the script adds a form <i nput > tag for “exact match” and the page
footer.

print <<"end_of _htm";
<TR>
<TH>Exact Mat ch?</ TH><TD>
<I NPUT TYPE = "checkbox" NAME = "exact match" CHECKED>
</ TD></ TR></ TABLE><P>
<I NPUT TYPE = "hi dden" NAME = "dat abase"
VALLE = "$formdat a{' dat abase' }">
<I NPUT TYPE = "hi dden" NAME = "session file"
VALUE = "$session_file">
<INPUT TYPE = "subnit" NAME = "sear ch_dat abase_del et e"
VALUE = "Submt Search Term' >
<P><BLOCKQUOTE>To get a full view of database, submt \"no\" keywords.
But beware, if there are too many itens in your database, you will
exceed the menory of your browser.
</ CENTER></ FORW»</ BADY></ HTM_>
end_of _htm
exit;

}

On the Web, the delete search form looks like the form shown in Figure
14.5 except for the delete-specific information.

Searching for Items to Delete

The script also needs a routine to accept the client-defined search
term(s) and search the database, presenting a dynamically generated list
of “hits.”

if ($formdata{' search_database delete'} ne "")

{

The process begins with a security check.

($session_file, $session_usernane, $session_group
$session_first_nane, $session_| ast_name, $session_enail)
= &Get Sessi onl nf o($sessi on_fil e,
$dat abase_nanager _script_url, *formdata);

Next, the script prints the page header.

Chapter 14: The Classified Ad Manager

print <<"end_of _htm";
<HTM_>
<HEAD>
<TI TLE>Del eting an Itemfromthe Database -
$dat abase</ Tl TLE>
</ HEAD>
<BCDY>
<CENTER>
<H2>Del eting an Itemfromthe Database - $dat abase</ H2>
</ CENTER>
<FCRM METHCD = "post "
ACTI ON = "$dat abase_nanager _script_url ">
<CENTER>
end_of _htm

Then the script begins searching the database by using the subroutine
sear ch_dat abase, which can be found at the end of this script. The script
passes to search_dat abase one parameter, del ete, so that the subroutine
will know how to output the results of the search.

&sear ch_dat abase ("del ete");

Finally, the script prints a list of hits in a table format. $search_results,
returned from the subroutine sear ch_dat abase, contains all the hits in the
form of table rows. The client then chooses which item to delete and
deletes it.

print "<TABLE BORDER = \"1\" CELLPADDI NG = \"4\"
CELLSPACI NG = \"4\">";

print & able_header ("Delete
lten);

print & able_header (@i el d_names);

print "</ TR\ n";

print "$search results";

print <<"end_of _htm";

</ TABLE><P>

<INPUT TYPE = "hi dden" NAME = "dat abase"
VALUE = "$formdat a{' dat abase' }">

<I NPUT TYPE = "hi dden" NAME = "session_file"
VALUE = "$session_file">

<INPUT TYPE = "submt" NAME = "submt _del etion"
VALUE = "Subnmit Deletion">

<INPUT TYPE = "subnit" NAME = "return_to_front page"
VALUE = "Return to Front page">

335

Chapter 14: The Classified Ad Manager

</ CENTER></ FCRV»</ BODY></ HTM.>
end_of _htm
exit;

}

On the Web, the deletion screen looks similar to Figure 14.6.

zl-lelzla|alala]y

Bl treeee foobm m-ﬂg—hﬁ'm_ﬂfﬂ-ljﬂ =1 1}

Deleting an Item from the Database - Vehicles

Delein Last Firat. Fhoan

. . - Yaur

Ineim MNosga Musio Kl Sunbir |D"Fr Lorstion |:E|"""I Adl
BE

L Tactitana | Eex ercnelf or | E13A0T-0ETY | Motorcpcles | Borbank |[B450 | Marcon

Semln

Figure 14.6 Deletion screen example.

Displaying the Modify Item Form
Next, the script repeats the same process, this time for modification.

if ($formdata{' search_formnodify'} ne "")

{

As usual, the client is authenticated first.

($session_file, $session_usernane, $session_group,
$session_first_nane, $session_| ast_nane, $session_emil) =

336

Chapter 14: The Classified Ad Manager

&Get Sessi onl nf o($session_file,
$dat abase_nanager _script_url, *formdata);

Then the usual header is printed.

print <<"end_of _htm";

<HTM_>

<HEAD>

<TI TLE>Query Dat abase for Mdification -

$dat abase</ Tl TLE>

</ HEAD>

<BCDY>

<CENTER>

<H2>Query Database for Mdification - $database</ H2>
</ CENTER>

<FCRM METHOD = "post" ACTI ON = "$dat abase_manager _script_url ">
<CENTER>

end_of _htm

Next, the script creates the input form using the subroutine create_
i nput _f ormat the end of this script.

&reate_input_form
Finally, the script adds the HTML footer as it did for delete.

print <<"end_of _htm";
<TH>Exact Mat ch?</ TH><TD>
<I NPUT TYPE = "checkbox" NAME = "exact _match" CHECKED>
</ TD></ TR></ TABLE><P>
<INPUT TYPE = "hi dden" NAME = "dat abase"
VALUE = "$formdat a{' dat abase' }">
<INPUT TYPE = "hi dden" NAME = "session_file"
VALLE = "$session_file">
<INPUT TYPE = "subnit" NAME = "search_dat abase nodi f y"
VALLE = "Subnit Search Terni>
<P><BLOCKQUOTE>To get a full view of database, submt \"no\" keywords.
But beware, if there are too many itens in your database, you will
exceed the nenory of your browser.
</ CENTER></ FCRV»</ BODY></ HTM.>
end_of _htn
exit;

}

337

Chapter 14: The Classified Ad Manager

On the Web, the modify search form looks exactly like Figure 14.5 except
for the modification-specific information in the header.

Searching the Database for ltems to Modify

As it did for delete, the script prints the results of the query for modifica-
tion after a security check.

if ($formdata{' search_database nodify'} ne "")

{

($session_file, $session_usernane, $session_group,

$sessi on_first_nane, $session_|ast_nanme, $session_email)=
&Cet Sessi onl nf o($sessi on_fil e, $dat abase_manager _script _url,
*formdata);

First, the script prints the page header.

print <<"end_of _htm";
<HTM_>
<HEAD>
<TI TLE>Mbdi fying an Itemin the Database -
$dat abase</ Tl TLE>
</ HEAD>
<BCDY>
<CENTER>
<H2>Mbdi fying an Itemin the Database - $dat abase</ H2>
</ CENTER>
<FCRM METHCD = "post "
ACTI ON = "$dat abase_nanager _script_url ">
<CENTER>
end_of _htn

Then the script begins searching the database using the subroutine
sear ch_dat abase at the end of the script as it did for delete.

&sear ch_dat abase ("nodify");

338

Chapter 14: The Classified Ad Manager

Next, it prints a list of hits in a table format. You will recall that
$search_resul ts, returned from the subroutine search_dat abase, contains

all the

print

print
print
print
print
print

hits in the form of table rows.

"<TABLE BCORDER = \"1\" CELLPADDI NG = \"4\"
CELLSPAC NG = \"4\">";

" <TH>Modi f y
I t enx/ TH>";

& abl e_header (@i el d_nanes);

"</ TR\ n";

"$search resul ts";

"</ TABLE><P>";

Furthermore, the script uses the subroutine &reate_i nput_formto print

the same form that was used for the “Add an Item” form. The client can

now specify an item to modify in the table and then type new informa-
tion to update the database fields.

&reate_input_form

Finally, the script prints the usual footer.

print <<"end_of _htm";

</ TABL
<I NPUT

<I NPUT

<I NPUT

<I NPUT

</ CENT

E><CENTER><P>

TYPE = "hi dden" NAME = "dat abase"

VALUE = "$formdat a{' dat abase' }">

TYPE = "hi dden" NAME = "session_file"

VALUE = "$session_file">

TYPE = "submt" NAME = "submt_nodification"
VALUE = "Submit Mdification">

TYPE = "submit" NAME = "return_to_frontpage"
VALLE = "Return to Front page">

ER></ FORVP</ BCDY></ HTM.>

end_of _htn

exit;

}

On the Web, the modification screen looks like Figure 14.7.

339

Chapter 14: The Classified Ad Manager

z|=le| 2|8l &|aln] e

Modifying an Iiem in the Database - YVehleles

Moliy | Lan [¥ Pl o

Bas | Fama || Duse | D0 Thasbar | CWTEY |Lecedon | Frice |
a6

& | Tuchilees [Ece | encofeler | 2134676379 | Wosuryes [Bwbask |ES30 |Mero
Fure

——

:n-]-r—]-||

Locion |

Bric |ﬁﬂ

Yeur Ad

Figure 14.7 Modification screen example.

Displaying the View Form

The next routines, beginning with the printing of the page header, allow
a client to view the database.

if ($formdata{' search_formview} ne "")

print <<"end of _htm";

<HTM_>

<HEAD>

<TITLE>d assi fi ed Ad Search Engi ne - $dat abase</ Tl TLE>
</ HEAD>

340

Chapter 14: The Classified Ad Manager

<BCDY>
<CENTER>
<H2>d assi fied Ad Search Engi ne - $dat abase</ H2>
</ CENTER>
<FCRM METHCD = "post "

ACTI ON = "$dat abase_manager _script _url ">
<CENTER>
<TABLE BCRDER = "1" CELLSPAC NG = "4"

CELLPADDI NG = "4">

end_of _htm

Next, the script creates an HTML form so that the client can submit key-
words with which to search. For each field in the database—except for
database ID and time fields, which are set by this script and not by the
administrator—the script generates an input field. It gets the list of data-
base fields from the @i el d_nanes array defined in the setup file.

However, to build the form, the script must send a few things: the
name of the field, the variable to be associated with that name, and the
type of input we are going to use (TEXTAREA, TEXT, SELECT). We
don’t want to send it the price or time of submission, though, because we
will create new input boxes for these items based on maximum and mini-
mum acceptable prices and posting date. Thus, these two fields must be
removed from the array before it is passed to the bui | d_i nput _f or m sub-
routine.

$id = pop (@iel d nanes);
$time = pop (@ield names);

Pay close attention to this if you are going to add other search fea-
tures. Here is the first occurrence of a special customizing area.

NOTE

Then the script uses bui | d_i nput _f or min cgi-lib.sol to create a form input
field for every client-defined database field.
foreach $field_name (@i el d_nanes)

if ($field_name ne "Price")

if ($field_name ne "Tine of Subm ssion")

341

342

Chapter 14: The Classified Ad Manager

{
print &buil d_i nput _forn("$Fl ELD ARRAY{ $fi el d_nare}",
" $FCRVl COMPONENT _ARRAY{ $f i el d_narne} ",
$fiel d_nane);

}
} # End of if ($field name ne "Price")
} # End of foreach $field_nane (@i el d_nanes)

Next, it adds the special new search boxes. In the setup file for each data-
base is a variable called $pri ce. If this variable is set to yes, it means that
you want the client to be able to search this type of database by price.

if ($price eq "yes")

{

print <<"end_of _htm";

<TH>H ghest Acceptabl e Price</ TH>

<TD><I NPUT TYPE = "text" NAME = "pri ce. hi gh"
SI ZE = "35" MAXLENGIH = "35">

</ TD></ TR<TR>

<TH>Lowest Acceptable Price</TH>

<TD><I NPUT TYPE = "text" NAME = "price.low' SIZE = "35"
MAXLENGTH = "35" VALUE = "0.00">

</ TD></ TR<TR>

end_of _htm

}

Clients are also allowed to search by database row age. The script prints
this second input field and finishes with a form input for exact match
and the form, body, and ending HTML tags.

print <<"end_of _htm";
<TH>Post ed wi t hi n how nany days</ TH>
<TD><I NPUT TYPE = "text" NAME = "num days_ago"
SI ZE = "35" MAXLENGTH = "35" VALUE = "30">
</ TD></ TR<TR>
<TH>Exact Mat ch?</ TH>
<TD><I NPUT TYPE = "checkbox" NAME = "exact natch"
CHECKED></ TD>
</ TR></ TABLE><P>
<INPUT TYPE = "hi dden" NAME = "dat abase"
VALUE = "$formdat a{' dat abase' }">
<INPUT TYPE = "hi dden" NAME = "session_file"
VALUE = "$session_file">
<INPUT TYPE = "submt" NAME = "search_dat abase_vi ew'

Chapter 14: The Classified Ad Manager

VALLE = "Submt Search Paraneters">
</ CENTER></ FCRW»</ BODY></ HTM.>
end_of _htm
exit;

}

On the Web, the view form looks like Figure 14.8.

Eli Ed ‘wew o LDy [Nspmoey i Hulg

Classiflied Ad Search Engine - Vehicles

Last Mae: |

Firat Moerse [

Bl |

Plyans: Muamibon |

Cnirgary Malorcyries =

L pe st |

Your S

: o

Highrat Accepeabls Brice | [100000

Lawes Arreprable Frice b[ﬂ

Paovted within haw sasny days |)

Exart Marnh? =
[Ny | F— | ;I
R I TR FENEEEY T I =
Figure 14.8 View form.

Searching the Classified Ad Database for Items to View

Next, the script searches the database for items to view. All this is exactly
the same as we’ve done before.

343

Chapter 14: The Classified Ad Manager

if ($formdata{' search_database view} ne "")
{
print <<"end_of _htm";
<HTM_>
<HEAD>
<TI TLE>Vi ewi ng t he Dat abase - $dat abase</ Tl TLE>
</ HEAD>
<BCDY>
<CENTER>
<H2>Vi ewi ng t he Dat abase - $dat abase</ H2>
</ CENTER>
<FCRM METHOD = "post "
ACTI CN = "$dat abase_nanager _script_url ">
<CENTER>
end_of _htm

This time, the script sends the subroutine a parameter of none, because
we do not want any radio buttons in the resulting table. There will be no
items to select, because all the client wants is to view the database.

&sear ch_dat abase ("none");

Finally, the script prints a list of hits in table format.

print <<"end_of _htm";
<TABLE BCRDER = "1" CELLPADDI NG = "4" CELLSPACING = "4">
end_of _htm

print & able_header (@i el d_nanes);
print "</ TR>\n";
print "$search_results";

print <<"end_of _htnm";

</ TABLE><CENTER><P>

<I NPUT TYPE = "hi dden" NAME = "dat abase"
VALUE = "$f orm dat a{' dat abase' }">

<INPUT TYPE = "hi dden" NAME = "session_file"
VALUE = "$session_file">

<INPUT TYPE = "submt" NAME = "search_f ormvi ew'
VALLE = "Vi ew $dat abase Ads">

<INPUT TYPE = "submt" NAME = "add_forn¥
VALUE = "Submt an Ad">

<INPUT TYPE = "submt" NAME = "search_formdel ete"
VALUE = "Del ete Your Ad">

<INPUT TYPE = "submt" NAME = "search_formnodify"

344

Chapter 14: The Classified Ad Manager

VALUE = "Modi fy Your Ad">

<INPUT TYPE = "subnit" NAME = "return_to_front page"
VALUE = "Return to Front page">

</ CENTER></ FORW»</ BADY></ HTM_>

end_of _htm

exit;

}

On the Web, the search results for a view might look like Figure 14.9.

BB A L YRS

Viewing the Database - Vehicles

Last Furut
Hume | Name

|“ Fhruamh |l'q-7 Lacutian |Pricw | YVawr Ad 'I'—||.I

Tactibara | Enc

e
enciielforg | 46T-657 ‘H-:-Hwﬂu Bartark: |ES0 | Bdarcon 6*195’6‘”‘-‘
Sunila

Figure 14.9 Viewing the database.

Adding an Item to the Classified Ad Database

The following routines direct the script when a client asks to add a new
item to the database.

if ($formdata{' submt_addition'} ne "")

First, the client is passed through security.

345

Chapter 14: The Classified Ad Manager

($session_file, $session_usernane, $session_group,
$session_first_nane, $session_|ast_nane, $session email) =
&Cet Sessi onl nf o($sessi on_fil e, $dat abase nanager _script_url,
*formdata);

In the case of an addition, the script assigns the new database entry a
unique database ID number. It accesses the counter file, which keeps
track of the last database ID number used. The count er subroutine, locat-
ed in cgi-lib.sol, sends us a new number (incremented by 1) and then
adjusts the counter file appropriately. The counter routine takes one
parameter: the location of the counter file.

&count er ($counter _file);

Then the ID value is slipped into the % or m dat a associative array so that
the following routine will add it to the new database row along with all
the other information.

$formdata{'id } = "$itemnunber"”;

Next, the script formats the incoming form data the way the database is
set up to understand (delimited by | and ending with a newline). It also
makes sure to substitute new lines and line breaks with the correspond-
ing HTML so that they will be displayed correctly.

The script also takes out any occurrences of |. If entered as part of
the data, this pipe character would destroy our ability to read the data-
base, because the script would interpret it as a field delimiter.

foreach $field (@i el d_nanes)

{

$val ue = "$FI ELD ARRAY{ $fi el d}";

$f or m dat a{ $val ue} =~ s/\n/
/g;
$f or m dat a{ $val ue} =~ s/\r\r/<P>/g;
$f or m dat a{ $val ue} =~ s/\|/~~/g;

Also, the script formats the price entered by the client so that it can later be

compared numerically. The script removes any dollar signs ($) or commas
(,) as well as any words such as “or best offer” ([a- zA-Z]) or spaces (\s).

346

Chapter 14: The Classified Ad Manager

if ($field eq "Price" ||
$field eq "Cost (per nonth for rental s")

{

$f orm dat a{ $val ue} =~ s/\$//g;

$f or m dat a{ $val ue} =~ s/[a-zA-Z]//g;
$f or m dat a{ $val ue} =~ s/,//g;

$f or m dat a{ $val ue} =~ s/\s//g;

}

To improve the table presentation, the script changes any blank fields
with <CENTER>- </ CENTER> so that when the table is displayed, it won’t have
an ugly, empty-cell look.

if ($formdataf{$val ue} eq "")

{
$f or m dat a{ $val ue} = " <CENTER>- </ CENTER>" ;
}

Finally, the script creates and then appends $new row with the value, thus
creating a database row such as fieldi|field2|field3]. When all the
fields have been spoken for, the script takes off the final pipe symbol and
the database row is complete.

$new row . = "$f orm dat a{ $val ue}|";
} # End of foreach $field (@i el d_names)
chop $new row, take out the |ast |

Next, the script creates a lock file so that it can edit the database file. If
two people are trying to edit the locked datafile at one time, one person
will not destroy the modifications made by the other person. The lock
file is created using the subroutine GetFil eLock in cgi-lib.sol, passing it
one parameter: the location of the lock file used by this program.

&Get Fi |l eLock ("%l ock_file");

Once the database is protected, the script opens it for appending (>>)
and writes to it the value of $new r ow.

open (DATABASE, ">>$data file") ||
&open_error($data_file);

347

348

Chapter 14: The Classified Ad Manager

print DATABASE "$new row';
print DATABASE "\n";

Then, after the change has been made, the script closes the database and
deletes the lock file so that others may access the datafile.

cl ose (DATABASE);
&Rel easeFi | eLock ("$lock file");

Finally, the script sends a note telling the client that the item was added
to the database.

print <<"end_of _htm";

<HTM_>

<HEAD>

<TI TLE>I tem Added to the Database - $dat abase</ Tl TLE>

</ HEAD>

<BCDY>

<CENTER>

<H2>| tem Added to the Database - $dat abase</ H2>

</ CENTER>

<FCRM METHCD = "post"

ACTI ON = "$dat abase_nanager _script_url ">

<CENTER>

<INPUT TYPE = "hi dden" NAME = "dat abase"
VALUE = "$f orm dat a{' dat abase' }">

<INPUT TYPE = "hi dden" NAME = "session_file"
VALUE = "$session_file">

<INPUT TYPE = "submt" NAME = "search_formyview
VALLE = "Vi ew $dat abase Ads">

<INPUT TYPE = "subnmt" NAME = "add_forn
VALUE = "Submit an Ad">

<INPUT TYPE = "submt" NAME = "search_formdel ete"
VALUE = "Del ete Your Ad">

<INPUT TYPE = "subnmit" NAMVE = "search_f ormnnodi fy"
VALUE = "Mdify Your Ad">

<INPUT TYPE = "subnit" NAME = "return_to_front page"
VALUE = "Return to Front page">

</ CENTER></ FORW»</ BADY></ HTM_>

end_of _htn

exit;

}

Figure 14.10 shows the client response on the Web.

Chapter 14: The Classified Ad Manager

i | e Tt o) i bing Clavasabad_swdcaics_sed o

lilililil_

Item Added o the Database - Vehicles

Tt T

Figure 14.10 Client response for an addition.

Deleting an Item from the Classified Ad Database

Next, the script checks to see whether it is being called on to make a
deletion.

if ($formdata{' subnit_deletion'} ne "")

{

If it is, it passes the client through security.

($session_file, $session_usernane, $session_group,
$session_first_name, $session_|ast_name, $session_enail) =
&Get Sessi onl nfo($sessi on_fil e, $dat abase_nanager _script_url,
*formdata);

Then it opens the database and reads it one line at a time.

open (DATABASE, "$data_file") ||
&open_error($data_file);

whi | e (<DATABASE>)

{

349

Chapter 14: The Classified Ad Manager

If the script finds a comment line, it adds it directly to $new dat a, a vari-
able used to store all the nondeleted database rows.

if ($_ =~ /" COWENT: /)
{

$new data .= "$ "

}

If it is not a comment row, however, the script splits the row by database
fields and pops the item ID, which should be the last field in the row.

el se

{
@ields =split (/\|/, $);
$itemid = pop(@ields);

If the item ID does not match the one submitted by the client, the script
adds the whole row to $new dat a. If it is the same, however, the database
row will not be added to $new dat a and thus will be deleted by default.

unless ($itemid eq "$formdata{' delete'}")

{

$new data .= "$ "

}
} # End of else
} # End of while (<DATABASE>)

Next, the script closes the database, opens a lock file as it did for the add
routine, and creates a temporary file that contains all the rows we
dumped into $new dat a.

cl ose (DATABASE);
&Get Fi l eLock ("%l ock_file");

open (TEMPFILE, ">$tenp_file") ||
&open_error ($tenp_file);

print TEMPFILE "$new data";

cl ose (TEMPFILE);

It then copies the temporary file over the old database file, thereby delet-

ing the entry, because it was not added to the temporary file. Then the
script releases the lock file so that someone else can use it.

350

Chapter 14: The Classified Ad Manager

renane ($tenmp_file, $data file);
&Rel easeFi | eLock ("$lock _file");

Finally, it prints the usual footer.

print <<"end_of _htm";
<HTM_>
<HEAD>
<TI TLE>Your |tem has been del eted - $dat abase</ Tl TLE>
</ HEAD>
<BCDY>
<CENTER>
<H2>Your Item has been del eted - $dat abase</ H2>
</ CENTER>
<FCRM METHCD = "post"
ACTI ON = "$dat abase_nanager _script_url ">
<CENTER>
<I NPUT TYPE = "hi dden" NAME = "dat abase"
VALLUE = "$formdat a{' dat abase' }">
<INPUT TYPE = "hi dden" NAME = "session_file"
VALUE = "$session_file">
<INPUT TYPE = "submt" NAME = "search_formview
VALLE = "Vi ew $dat abase Ads">
<INPUT TYPE = "submt" NAME = "add_forn
VALUE = "Submt an Ad">
<INPUT TYPE = "submt" NAME = "search_formdel ete"
VALUE = "Del ete Your Ad">
<INPUT TYPE = "subnmit" NAME = "search_f ormnodi fy"
VALUE = "Modi fy Your Ad">
<INPUT TYPE = "subnit" NAME = "return_to_front page"
VALLE = "Return to Front page">
</ CENTER></ FORW»</ BADY></ HTM_>
end_of _htm
exit;

}

On the Web, the client response looks like Figure 14.10 except for the
delete-specific header.

Modifying an Item in the Database
Last, but not least, the script takes care of any modifications asked of it.

if ($formdata{' subnit_nodification'} ne "")

{

351

352

Chapter 14: The Classified Ad Manager

As usual, the script begins with a security check.

($session_file, $session_usernane, $session_group,
$session_first_name, $session_| ast_name, $session_email) =
&Cet Sessi onl nf o($sessi on_fil e, $dat abase_manager _script _url,
*formdata);

Next, the script makes sure that the client clicked one of the radio but-
tons on the modification table; without that information, it would not be
able to know which item to modify. $f orm dat a{' nodi fy' } will be equal to
the database ID number of the item if one of the radio buttons has been
selected.

if ($formdata{' nodify'} eq "")

{

print <<"end_of _htm";

<HTM_>

<HEAD>

<TI TLE>Modi fying an Itemin the Database -

$dat abase</ TI TLE>

</ HEAD>

<BCDY>

<CENTER>

<H2>Modi fying an Itemin the Database - $dat abase</ H2>

</ CENTER>

<BLOCKQUOTE>

I"'msorry, | was not able to nodify the database because none of the
radio buttons on the table was selected so | was not sure which item
to nodify. Wuld you pl ease make sure that you select an item "and"

fill inthe newinfornation. Please press the back button and try
agai n. Thanks.

</ BLOCKQUOTE>

end_of htm

exit;

}

Next, the script opens the database and reads through it one line at a
time, adding the comment lines to $new dat a.

open (DATABASE, "$data file") ||
&open_error($data_file);
whi | e (<DATABASE>)
{

Chapter 14: The Classified Ad Manager

if ($_ =- /~COWENT:/)
{

$new data .= "$ ";

}

If the line is not a comment line, however, the script pops the i temi d as it did
for deletion. But this time, it also pushes the i temid back into the array after
it has read it, because we still want to have the ID in the row when the rou-
tine is finished. We’ll need the complete row for the final modified row.

el se

{

@ields =split (/\|/, $);
$itemid = pop(@ields);
push (@ields, $itemid);

If the item ID from the database equals the one submitted by the client,
the script creates a new array, @! d_fiel ds, equal to the current fields in
the row.

if ($itemid eq "$formdata{ nodify'}")

{
@l d_fields = @i el ds;
}

If the two values are not equal, however, the script adds the row to
$new data. By the end, the script will have copied every line in the data-
base to $new data except for the item that the client wanted modified.
Fortunately, the script saved that line in the @I d_fi el ds array.

el se

{

$new data .= "$_";

}
} # End of else
} # End of while (<DATABASE>)

cl ose (DATABASE);
To add the modified line to the database, the script begins by initializing

a few variables. $new | i ne will contain the modified database row, and
$count er will be used to count database fields in the row.

353

354

Chapter 14: The Classified Ad Manager

$counter = 0;
$new line = "";

Then the script goes through each of the fields in @i el d_val ues, which is
a list containing each of the database fields as defined in the setup file.

until ($counter >= @i el d_val ues)

{

For each field, the script initializes the variable $val ue and sets it equal to
an incremented field according to the current value of counter.

$val ue
$val ue

" $;‘i el d_val ues[$counter]";

If that field, as represented by the form input, is equal to zero (the client
did not wish to modify that field), the script takes the old value (as stored
in the @l d_fi el ds array) and adds it to $new | i ne, appending a pipe (I) at
the end to denote the end of the field.

if ($formdata{$val ue} eq "")
{

$new line .= "$ol d_fiel ds[$counter]|";

}

On the other hand, if the user wanted to edit that field, the script for-
mats the incoming data as it did for the add routine and adds the new
data to $new | i ne.

el se

{

$f or m dat a{ $val ue} =~ s/\n/
/g;
$f orm dat af{ $val ue} =~ s/\r\r/<P>/g;
$f or m dat a{ $val ue} =~ s/\|/~~/g;

if ($field eq "Price" ||
$field eq "Cost (per nmonth for rental s")
{
$f orm dat a{ $val ue} =~ s/\$//g;
$f or m dat a{ $val ue} =~ s/[a-zA-Z]//g;
$f or m dat a{ $val ue} =~ s/,//g;

Chapter 14: The Classified Ad Manager

$f or m dat a{ $val ue} =~ s/\s//g;
}

if ($formdata{$val ue} eq "")

{
$f or m dat a{ $val ue} = " <CENTER>- </ CENTER>";
}

$new | ine .= "$f ormdat a{ $val ue}|";

} # End of else

$count er ++;

} # End of until ($counter >= @i el d_val ues)
chop $new |ine; Take off the final |

Next, the script opens the temporary file and prints the $new dat a lines as
well as the modified database line contained in $new | i ne. Then it closes
the temporary file, copies the temporary file over the old database file,
and releases the lock.

&Get Fi | eLock ("$l ock_file");

open (TEMPFILE, ">$tenp_file") || &open_error($tenp_file);
print TEMPFI LE "$new data";

print TEMPFI LE "$new | ine";

cl ose (TEMPFILE);

rename ($tenp file, $data file);

&Rel easeFi | eLock ("$l ock_file");

Finally, the script prints the usual footer.

print <<"end_of _htm";
<HTM_>
<HEAD>
<TI TLE>Your |tem has been Mdified - $dat abase</ Tl TLE>
</ HEAD>
<BCDY>
<CENTER>
<H2>Your Itemhas been Mdified - $dat abase</ H2>
</ CENTER>
<FCRM METHCD = "post "
ACTI ON = "$dat abase_nanager _script_url ">

<CENTER>
<INPUT TYPE = "hi dden" NAME = "dat abase"

VALUE = "$formdat a{' dat abase' }">
<I NPUT TYPE = "hi dden" NAME = "session file"

355

356

Chapter 14: The Classified Ad Manager

VALUE = "$session_file">

<INPUT TYPE = "subnit" NAME = "search_f ormvi ew
VALLE = "Vi ew $dat abase Ads">

<INPUT TYPE = "subnit" NAME = "add_fornf¥
VALLE = "Subnit an Ad">

<INPUT TYPE = "subnit" NAME = "search_f ormdel ete"
VALUE = "Del ete Your Ad">

<INPUT TYPE = "submt" NAME = "search_f ormnnodi fy"
VALLE = "Mdify Your Ad">

<INPUT TYPE = "subnit" NAME = "return_to_front page"
VALLE = "Return to Front page">

</ CENTER></ FCRV»</ BODY></ HTM.>

end_of _htn

exit;

} # End of if ($formdata{' submt_nodification'} ne "")

On the Web, the client response looks like Figure 14.10 except for the
modify-specific header.

The CgiRequire Subroutine

Qgi Requi re checks to see whether the file that the script is trying to require
exists and is readable by it. This subroutine provides developers with an
informative error message when they’re attempting to debug the scripts.

sub Cgi Require
{

The @equire_files array is first defined as a local array and is filled with
the filenames sent from the main routine.

local (@equire files) = @;

Coi Requi re then checks to see whether the files exist and are readable by
the script. If so, the files are required.

foreach $file (@equire_files)

{

if (-e "$file" && -r "$file")
{
require "$file";

}

Chapter 14: The Classified Ad Manager

If there is a problem, however, Cyi Requi re sends an error message that
will help the developer isolate the problem.

el se

{

print "I'msorry, | was not able to open
$file. Wuld you pl ease check to make sure
that you gave ne a valid filename and that the
permssions on $file are set to allow ne
access?";

exit;

} # End of foreach $file (@equire_files)
} # End of sub require

The create_input_form Subroutine

The create_i nput_f ormsubroutine is used to generate the input forms that
the client will use to input new data for an addition or keywords for a search.

sub create_input_form

{
First, the table header is printed.

print "<TABLE BORDER = \"1\" CELLPADDING = \"4\"
CELLSPACING = \"4\">";

Then the subroutine is used to create an HTML form. In the end, we
must have one input field for each field in the database (except the data-
base ID field, which is set by this script and not by the client).

The subroutine gets the list of database fields from the @i el d_nanes
array defined in the setup file and, for every element in the array, creates
an input field. To do so, it sends the bui | d_i nput _f orm subroutine in cgi-
lib.sol a few parameters: the name of the field, the variable to be associated
with that name, and the type of input we are going to use (TEXTAREA,
TEXT, SELECT).

foreach $field_name (@i el d_nanes_user _defi ned)

{
357

358

Chapter 14: The Classified Ad Manager

$vari abl e_nane = $FI ELD ARRAY{ $fi el d_nane};

$f orm t ype = $FORM COMPONENT_ARRAY{ $f i el d_nane};
I ocal ($input_form;

$i nput_form="";

$input_form.= "<TR>\n";
$input_form.= & abl e_header ("$field_name");
$input_form.= "<TD>";

$input_form.= &rake formrow ("$fiel d_nane",

"$vari abl e_nane",
"$f orm type");
$input_form.= "</ TD></ TR\ n";
print"$i nput_fornt;

} # End of sub create_input_form

The search_database Subroutine

The search_dat abase subroutine is used to search the database for key-
word matches.

sub search_dat abase

{

First, the local variable $subnit_type is set equal to the value sent to us
from the main routine. This will be either nodi fy, del ete, or, in the case
of a view search, none.

| ocal ($submt _type) = @;

Next, the subroutine opens the database file and begins checking each
field in every row against the keywords submitted, disregarding comment
lines (OCOMVENT:).

open (DATABASE, "$data file")||
&open_error($data_file);
whi | e (<DATABASE>)
{
$dat abase row = $_;
unl ess ($dat abase_row =~ /~COMMVENT: /)

{

Chapter 14: The Classified Ad Manager

$di d_we_find_a_match is initially set equal to no to make sure that it has
not been initialized elsewhere. The $di d_we_find_a_nat ch variable is used
to keep track of whether a hit was made based on the client-submitted
keyword. If a match was found, the variable will equal yes.

$did we find_a match = "no";

Next, the subroutine splits the database row into the @ow array and cre-
ates some variables based on values specified in the setup file.

@ow = split(/\]|/, $dat abase_row);
$row price = "$row $price_field_nunj";
$row date = "$row $date fiel d_nuni";
$l ast _nane_fi el d_nunber = "0";
$row | ast _name = "$row $l ast _name_fi el d_nunber]";
($nont h, $day, $year) =
split (/-/, $row $date field nunj);

It then uses the date.pl library to convert the row date into a Julian date
that it uses to compare to today’s date and generate the number of days
ago that the row was posted.

$j ulian_day = & day($nont h, $day, $year);

($t oday_ront h, $t oday_day, $t oday_year) = split (/-/,
&get _date);

$today = & day($today_nont h, $t oday_day, $t oday_year) ;

$post ed_days_ago = ($today - $julian_day);

Next, search_dat abase checks to see whether the client asked us to weed
out by price or age. By the way, the if tests will pass if the user did not
submit any pruning value.

if (($rowprice <= $formdata{' price.high} ||
$formdata{' price.high'} eq "")

&&

($row price >= $formdata{' price.low} ||

$formdata{' price.low} eq "")

&&

($f ormdat a{' num days_ago'} >= $post ed_days_ago | |
$f ormdat a{' num days_ago'} eq ""))

{

359

Chapter 14: The Classified Ad Manager

Then, for each key in the % orm data associative array, the script sets
$fi el d_nunber equal to —1. We do this because both the pesky “submit” and
“exact match” key/value pairs may come in along with the rest of the form
data. We do not want the script to search the database for those fields,
because they don’t exist! By setting $fi el d_nunber equal to -1, the script
will be able to filter such non—field keys with the following routine:

foreach $formdata key (keys % orm dat a)

{
$fiel d_nunber = -1,

The subroutine first goes through the fields in the database (@i el d_val -
ues), checking to see whether there is a corresponding value coming in
from the form ($formdata_key). However, because arrays are counted
from zero rather than from 1 and because @i el d_val ues gives us a count
of the array starting at 1, the script offsets the counter by 1.

Thus, if the form “key” submitted is indeed a field in the database,
$fiel d_nunber ($y - 1) will be its actual location in the array.

for ($y = 1; $y <= @iel d_val ues; $y++)

{
if ($formdata key eq @i el d_val ues[$y-1] &&
$f or m dat a{ " $f orm dat a_key"} ne "")

{

$field_nunber = $y - 1;

last; # Exit out of the for | oop because we have
verified field

}
} # End of for ($y = 1; $y <= @i el d_val ues; $y++)

Then the script checks the submitted value against the value in the data-
base. However, the script must make sure that the value is not on or sub-
mt keyword. If $fiel d_nunber is still equal to —1, it means that the script
did not match the form data key against an actual database field, so it
should try the next key. Otherwise, it knows that it has a valid field to
check against. Again, $fiel d_nunber must be less than or equal to -1,
because the array starts from zero.

if ($field_number > -1)
{

360

Chapter 14: The Classified Ad Manager

Next, the script performs the match, checking the database information
against the submitted keyword for that field. First, it performs an exact
match test. If $f orm dat a{' exact_match'} is not equal to on, it means that
the exact match check box was not checked. The match is straightfor-
ward. If the keyword string ($f or m dat a{ " $f orm dat a_key"}) matches (=~) a
string in the field that the subroutine is searching ($rowf $fiel d_nunber])
with case insensitivity off (/i), then the script knows it got a hit.

if ($formdata{' exact_nmatch'} ne "on")

{
if ($row $field_nunber] =~

/ $f or m dat a{ $f or m dat a_key}/i)
{

However, before we get too excited, the script must make sure either that
the client is an administrator (and is allowed to see all rows) or that the
row the client got a hit on is actually a row that the client initially
entered; it also must make sure that this is not a general view request.
The first two i f tests are obvious. The reason for the last test is that if the
client is asking to view, we don’t care whether the client entered the row.
We want him or her to see everything. Only in the case of modifying and
deleting do we want the extra level of filtering.

if (($session_group eq "adnmn" ||
$row | ast_name eq "$session_| ast_nane") &&
$subnmt_type ne "none")

$di d_we_find_a_match = "yes";
last; # Exit out of ForEach keys in FornData
}

The subroutine also handles a general view request. It is basically the
same routine, but it covers whatever was left by the previousif test.

if ($submt_type eq "none")
{

$did_we find_a match = "yes";
last; # Exit out of ForEach keys in FornData

}
} # End of if (@ow $field_nunber]....
} # End of if ($formdata{' exact_match'} eq "")

361

362

Chapter 14: The Classified Ad Manager

On the other hand, the client may have clicked the exact match check
box. This time, the script proceeds with an exact match using the \b
switch, keeping it case-insensitive (/i). The same $di d_we_find_a_match
setting and i f tests apply as before.

el sif ($row $fiel d_nunber] =~
/\ b$f or m dat a{ $f or m dat a_key}\ b/ i)

if (($session_group eq "admn" ||
$row | ast _nane eq "$session_| ast_name") &&
$subm t _type ne "none")

{
$did_we_find_a match = "yes";
last; # Exit out of ForEach keys in FornData

if ($submt_type eq "none")
{
$did_we_find_a_match = "yes";
last; # Exit out of ForEach keys in FornData

}
} # End of elsif ($row $fiel d_nunber]....
} # End of if ($field_nunber > -1)
} # End of foreach $f ormdata_key (keys 9% orm dat a)

If the script finds a match ($di d_we_find_a_match equals yes), it needs to
create a table row for the output. $search_resul ts is used to collect all the
hits formatted as table rows for the output. A hit adds each of the fields
of the database row to a table row. The subroutine also creates a variable
called $hit_counter to remind it that it got a hit. If $hit_counter is never
set to 1, the script knows that it must tell the client that her keyword
turned up nothing.

if ($did we find_a match eq "yes")
{

$search_results .= "<TR>";
$hit_counter = "1";

Then the subroutine gathers the database ID row number so that it can
use it and then puts it back into the @ow array.

$db_i d_nunber = pop (@ow;
push (@ow, $db_id_nunber);

Chapter 14: The Classified Ad Manager

The subroutine then begins creating the database rows created by the
HTML. If this is not a view and if it is a row that satisfies security, the
script creates a first column for the radio button that the client will use to
select a database row to modify or delete.

if (($session_group eq "admn" ||
$row | ast _name eq "$session_| ast _nanme")
&
($subnmit_type ne "none"))
{
$search_results .= "<TD ALIGN = \"center\">\n";
$search results .= "<INPUT TYPE = \"radio\"
NAME = \"$subm t _type\"
VALUE = \"$db_i d_nunber\">";
$search results .= "\n</ TD>\n";
} # End of if ($session_group eq "admn" |]....

Then the subroutine fills in the HTML database table row. In the case of
viewing, it adds every row, and in the case of modification and deletion, it
gives them only the appropriate rows.

foreach $field (@ow

if ($submt_type eq "none")

{
$search_results .= "<TD>$fi el d</ TD>\n";

el sif ($row |ast_name eq "$session_| ast_nane" ||
$sessi on_group eq "adm n")
{

$search_results .= "<TD>%$fi el d</ TD>\ n";

}
} # End of foreach $field (@ow)...
} # End of if ($did we find_a match eq "yes")....
} # End of if (($rowprice <= ...
} # End of unl ess ($database_row =~ /"COWENT: /)
} # End of while (<DATABASE>)

cl ose (DATABASE);

Next, the subroutine provides an algorithm to handle the possibility that a
client-submitted keyword may turn up nothing in the search. At this point,
if $hit_counter is not equal to 1, it means that the search did not turn up a
hit. Thus, the script sends a note to the client with a link to the search form.

363

Chapter 14: The Classified Ad Manager

We use a hyperlink rather than a submit button, because we want
the client to access this script without a CONTENT_LENGTH so that the
form will pop up.

NOTE

Also, the script exits the routine here if no hits were found. We do not
want it to print an empty table.

if ($hit_counter ne "1")

{

print "I'msorry, | was unable to find a match for the
keyword(s) that you specified in a database row
that you are authorized to see. Feel free to
try agai n</ A>";

print "</ CENTER></ BODY></ HTM_.>";

exit;

} # End of sub search_dat abase

The get_date Subroutine

The get _date subroutine is used to get the current date of each added
classified ad database row.

sub get _date
{

@ays = (' Sunday', 'Mnday', 'Tuesday', 'Wednesday',
' Thursday', 'Friday', 'Saturday');

@wonths = (' January', 'February', 'March', "April',
"May', 'June', 'July', 'August',
'Septenber', 'Cctober', 'Novenber',

' Decenber');

The | ocal ti me command is used to get the current time, spl it ting it into
variables.

($sec, $mi n, $hour, $nday, $non, $year, $wday, $yday, $i sdst) =
local tine(tinme);

364

Chapter 14: The Classified Ad Manager

Then the variables are formatted and assigned to the final $dat e variable.

if ($hour < 10) { $hour = "O$hour"; }
if ($mn < 10) { $min = "0$nin"; }

if ($sec < 10) { $sec = "0O$%sec"; }
$dat e = "$non- $nday- 19%year";

}

365

