CHAPTER 13

The Groupware Calendar

OVERVIEW

Many offices have a calendar tacked to the wall in a central location.
Employees add items such as scheduled vacations, reservations of confer-
ence rooms, or notices about meeting, conferences, or seminars. By
using a shared calendar, employees can more efficiently coordinate their
work with that of others in the organization. The groupware calendar
script provides a Web interface to a similar shared calendar. Every user
can read what other people have added and, if the script is configured to
do it, can modify the other entries. Calendar entries are stored in an
ASCII database file.

The calendar has two primary views: the month view and the day
view. In the month view, users can see calendar months for any year with-
in a range specified at installation. Each day in the month displays the
subjects of events scheduled for that day. In the day view, the events for a
given day can be viewed in greater detail. Users can easily change the dis-
played month or year depending on their needs.

265

Chapter 13: The Groupware Calender

Varying levels of security are configurable. For example, the calendar
can be made to be viewable by anyone or by authenticated users only.
Items within the calendar database can be made to be modifiable or
deletable only by the person who posts them or by everyone.

Installation and Usage

The application should be installed into the default directory, Calendar.
Figure 13.1 outlines the expanded directory structure and the permis-
sions of files and subdirectories.

| Calender Directory (read, execute)

| calender.setup (read) |

4| calender.cgi (read, execute) |

4| Databases Subdirectory (read, write, execute) |

—| calender.counter (read, write) |

calender.events (read, write)

—| calender.users (read, write) |

—‘ Personal (read, write, execute) |

| Calender_session_files Subdirectory (read, write, execute) |

4| Library Subdirectory (read, write) |

—| cgi-lib.sol (read) |
— cgi-lib.pl (read) |
—| Authentication Libraries (read) |

—| date.pl (read) |

| mail-lib.pl (read) |

Figure 13.1 Directory layout for calendar.

This script should be placed in a directory that has permissions set to
allow the Web server to read and execute and should expand to include

266

Chapter 13: The Groupware Calender

three directories (Calendar_session_files, Library, and Databases) and
two files (calendar.cgi and calendar.setup).

calendar.cgi is the application that provides most of the calendar pro-
cessing. This file should be readable and executable by the Web server
and will be discussed in greater detail in the design discussion.

calendar.setup is the file used to set the options and variables that
pertain to your local setup. The file must be readable by the Web server
and will be discussed in greater detail in the “Server-Specific Variables
and Options” section.

Calendar_session_files is the subdirectory used by the authentication
libraries to store session files, as discussed in Chapter 9. Initially the
directory will be empty, but if it is set to be readable, writable and exe-
cutable relative to the Web server, it will continually fill up and be
pruned as a part of daily usage.

Library is a subdirectory containing the supporting CGI libraries,
which are discussed in Part Two. The subdirectory should be readable
and executable by the Web server and should contain the following
libraries, which should be readable by the Web server: auth-extra-html.pl,
auth-extra-lib.pl, auth-lib-fail-html.pl, auth-lib.pl, auth-server-lib.pl, auth-
fail_html.pl, cgi-lib.pl, cgi-lib.sol, date.pl, and mail-lib.pl.

Databases is a subdirectory containing the counter, events, and user
files as well as any other calendar database files for alternative calendars.
Because calendar.cgi must be able to write to this directory, its permis-
sions should be set to be readable, writable, and executable.

calendar.counter is a text file used to keep track of unique ID num-
bers that have been assigned to each event in the calendar database.
Initially, this file should contain the number 1 on the first line and noth-
ing else. As time goes by, calendar.cgi will increment this number for every
new entry. The file must be readable and writable by the Web server.

calendar.events is the datafile used to store all the entered events.
The format is exactly the same as for the databases we have discussed in
previous chapters, including the protocol for comment lines and the use
of pipe (I) as a field delimiter. If you have jumped right to this chapter
and do not understand the database format, read the section on the
datafile in Chapter 11.

267

268

Chapter 13: The Groupware Calender

The default fields for the events file are as follows: the day, month,
year, username, first name, last name, E-mail address, subject, event time,
event description, and ID number. The file must be readable and
writable by the Web server.

calendar.users is a file containing the list of users who are allowed to
modify the events database. This user file is formatted exactly the same as
the default user file discussed in Chapter 9. This file should be readable
and writable by the Web server and should initially be empty.

Personal is a sample subdirectory used to describe how to create sepa-
rate calendar databases to be displayed by the same calendar.cgi script.
The directory contains three files: calendar.counter, calendar.events, and
calendar.users. These files define all the specific formats of each separate
calendar.

Server-Specific Setup and Options

calendar.setup is the setup file used by calendar.cgi to define server-spe-
cific variables, configure authentication, and configure the events data-
base. Defined variables are as follows:

$this_script_url is the location of calendar.cgi. Because we refer to it
from here and because, theoretically, this file will be in the same directory,
you need only state the name of the script. If that is the case and if you
don’t change the name of the file, don’t bother changing this variable.

$the_current_year is pretty obvious. Set this to the current year.

$great est _year is the highestnumbered year for which you want peo-
ple to be able to submit calendar events on the Add Item form.

$dat abase_fil e is the location of the file that contains the calendar
database. Because this file can be defined by the user, we tag onto this
variable the value of $cal endar _type, which is given to us by the main
script, calendar.cgi. In short, $cal endar _type is a value set by the initial
link via urlencoding

htt p: // waw. f oobar . con cgi -
bi n/ Cal endar/ cal endar . cgi ?cal endar =Per sonal

Chapter 13: The Groupware Calender

Thus, the $cal endar_type should be the directory name of each separate
calendar.

We don’t recommend that you change this variable. The only reason
to change it is if you don't like our file-naming conventions or if you
are working with DOS and can have only 8.3 filenames.

NOTE

$counter_file is the path of the file that you are using to keep track of
unique ID numbers. To make deletions and modifications, we must have
a unique ID number so that the script can determine which database
item to delete. These ID numbers should always be the last field in any
database row. Again, because we need to isolate each of the calendars, we
will reference the counter file including the $cal endar _t ype variable.

$tenp_file is a file that the script uses to temporarily store various
data at various times. The file will be generated and deleted by the script.

$l ock_file is a file that the script uses to make sure that only one per-
son can modify the database at any given time.

Authentication variables are explained in Chapter 9.

@ay_nanes is an array containing the names of the weekdays. A word
of caution for all the arrays: the most common source of configuration
errors is to forget to put a comma here or a quotation mark there, or
even to forget to add one of the fields. So be very careful here; every-
thing must be perfect!

@wont h_nanes is—yup, you got it—a list of month names.

9MONTH_ARRAY is an associative array that pairs month names with their
numbers.

9@1 ME is an associative array that pairs time names with military time
values.

@i me_val ues is an ordered list of military time values.

9% ELD_ARRAY is an associative array that pairs database field names
with their variable names.

@i el d_nanes is the list of database fields.

269

Chapter 13: The Groupware Calender

@field_values is the list of the variable names associated with the
database fields in @field_names. By the way, the reason that we don’t use
key and value commands to define the arrays relative to all the associative
arrays is that we want to predefine an order for them. If we used keys and
val ues, we would lose our order in the hash table entry to the associative
array.

$field_numtine is the element number in the array of the event_tine
field in the database. We need this value to sort the database by time so
that when you click on a day view, the day events come up in order. When
setting this variable, remember that arrays count from zero and not from 1.

As an example, the complete calendar.setup file is listed next:

$this_script_url = "calendar.cgi";

$the_current_year = "1996";

$great est _year = "2011";

$dat abase_file = "./Databases/ $cal endar _t ype/ cal endar . event s";
$counter _file = "./Databases/ $cal endar _t ype/ cal endar. counter";
$tenp file =

"./Cal endar_session_fil es/ $cal endar _type/ cal endar _tenp.file";
$lock_file =

"./Cal endar_sessi on_fil es/ $cal endar _t ype/ cal endar _I| ock.file";
$auth_lib = "$lib";

$auth_server = "off";

$auth_cgi = "on";

$aut h_user _file = "./Databases/ $cal endar _t ype/ cal endar . users";
$auth_alt_user _file = "";

$aut h_defaul t _group = "user";

$aut h_add_regi ster = "on";

$auth_emai |l _register = "off";

$aut h_adm n_from address = "sel ena\ @oobar. conf;
$auth_adm n_emai|l _address = "sel ena\ @ oobar. con';
$aut h_session_|l ength = 2;

$aut h_session_dir = "./Cal endar_session_fil es";

$aut h_regi st er_message = "Thanks, you nay now | ogon with
your new usernane and password.";

$auth_al | ow regi ster = "on";
$aut h_al | ow search = "on";

$aut h_generate_password = "of f";
$aut h_check_duplicates = "on";

$aut h_passwor d_message = "Thanks for applying to our
site, your password is";
@uth_extra_fields = ("auth_first_nane",

270

Chapter 13: The Groupware Calender

"aut h_l ast _nare",
"auth_enail");
@ut h_extra_desc = ("First Name",
"Last Nane",
"Email");
@ay_names = ("Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday",
" Sat urday");
@wont h_names = ("January", "February", "March", "April",
"May", "June", "July", "August",
"Septenber”, "CQctober”, "Novenber",

"Decenber");

IMVONTH_ARRAY = (' January', '1', ' February', '2',
"March', '3, "Aprilt, "4,
"May', 'S5, "June', '6',
"July', 7", "August', '8',
' Septenber', '9', "Cctober', '10',
' Novenber', '11', ' Decenber', '12');

%1ME = ('01:00, "1 AM, '02:00', '2 AM, '03:00,
'3 AM, '04:00', '4 AM, '05:00', '5 AM,
'06:00', '6 AM, '07:00', '7 AM, '08:00',
'8 AM, '09:00', '9 AM, '10:00', "10 AM,
'11:00", '"11 AM, '12:00', '12 Noon', '13:00',
‘1 PM, '"14:00', '2 PM, '15:00', '3 PM,
'16:00', '4 PM, '17:00', '5 PM, '18:00",
'6 PM, "19:00', '7 PM, '20:00', '8 PM,
'21:00', "9 PM, '22:00", '10 PM, '23:00',
"11 PM, '24:00', '12 Mdnight');

@i ne_val ues = ("01: 00", "02:00", "03:00", "04:00",

"05: 00", "06:00", "O7:00", "08:00",

"09: 00", "10:00", "11:00", "12:00",

"13: 00", "14:00", "15:00", "16:00",

"17: 00", "18:00", "19:00", "20:00",

"21:00", "22:00", "23:00", "24:00");
9% ELD ARRAY = (' Day', 'day',

"Month', '‘nonth',

'Year', 'vyear',

' Username', 'usernane',
"First Nane', 'first_nane',
'Last Nane', 'last_nane',

"Emai |l Address', 'email',
' Subject', 'subject',
"Bvent Tine', 'tine',
' Body', 'body',
' Dat abase |d Nunber',
' dat abse_i d_nunber');
@ield_names = ("Day", "Mnth", "Year", "Usernane",

271

272

Chapter 13: The Groupware Calender

"First Name", "Last Nane",
"Emai | Address", "Subject",
"Event Tine", "Body",
"Dat abase 1d Nunber");
@ield_values = ("day", "nonth", "year", "username",
"first_name", "last_nane", "email",
"subject”, "time", "body",
"dat abse_i d_nunber");
$field numtine = "8";

Running the Script

Once you have configured the setup file to the specifics of your server
and calendar datafile, it is time to try out your installation. To reference
the script, use the following URL format.

<A HREF="htt p: // ww f oobar . coni cgi -
bi n/ Cal endar/ cal endar . cgi " >Cal endar </ A>

When clients click on this link, they should see the front page of your cal-
endar with the default configurations. To reference separate calendar
databases, the link to this script must have ?cal endar =Sore_subdi rect ory
added at the end of the URL. For example,

htt p: // waw. f oobar . con cgi -
bi n/ Cal endar/ cal endar . cgi ?cal endar =Per sonal

DESIGN DISCUSSION

Figure 13.2 outlines the logic of the script as it manages the needs of the
client and the demands of the server.

The script begins by starting the Perl interpreter and printing the
HTTP header.

#! [usr/ 1 ocal / bi n/ perl
print "Content-type: text/htm\n\n";

Chapter 13: The Groupware Calender

Require Supporting Files |

Y

Read/Parse Incoming Form Data

l

Require Setup File

Y

Output Month View <«

Y

A4 L——>| Change Month/Year

Output Day View

L

| Modify Item | Delete Item | | Add Item |

Figure 13.2 The script logic.

Loading the Supporting Libraries

Next, the script loads the necessary files using the subroutine Cgi Require
at the end of this script. If there is a problem loading files, this subrou-
tine returns a message that’s valuable for debugging. $li b is the location
of the Library directory, where these files are to be stored; because it is
hard-coded in the main script, you must be careful to change it here if
you move the library elsewhere. Keep $lib equal to ./Library if you do
not have a Library directory and are going to use the default directory
included on the accompanying disk.

$lib="./Library";
&Cgi Require("$lib/cgi-lib.pl™, "$lib/cgi-lib.sol",
"$lib/auth-lib.pl", "$lib/date.pl");

273

Chapter 13: The Groupware Calender

Reading and Parsing Incoming Form Data

cgilib.pl is used to parse the incoming form data. By passing it (*formdata),
the subroutine returns an associative array that we reference as
$formdat a{' key' } instead of $i n{' $key' }. In the end, the script will reference
all the incoming form data as $f or m dat af* vari abl enane’ } .

&ReadPar se(*form dat a) ;

Loading the Setup File

Once the incoming form data has been processed, the script determines
which calendar database to use. If the calendar administrator has set up
more than one calendar, each calendar database will be in a subdirectory,
such as the example Personal Database that is included in the accompanying
disk. To reference these separate databases, the link to this script must have
?cal endar =Sonesubdi rect ory added at the end of the URL. For example:

htt p: // waw. f oobar . cont cgi -
bi n/ Cal endar/ cal endar . cgi ?cal endar =Per sonal

If the client does not submit a new database to use, the script will simply
assign the default database and calendar. The $cal endar _t ype variable will
be used within the calendar.setup file, as addressed earlier.

if ($formdata{'calendar'} ne "")

{

$cal endar _type = "./$formdata{' cal endar'}";

}

el se

{

$cal endar _type

}

n . / " ;
Then the script defines all the calendar-specific variables by using the

setup file, which you should have customized for your site.

& equi re("cal endar . setup");

274

Chapter 13: The Groupware Calender

Defining Intrascreen Variables

Next, we make sure that the script “remembers” the $sessi on_fil e so that it
can continually check for authentication and keep track of the current
client. However, if the client has already logged on, the script does not
need to revalidate the client, because it will be getting the $session_file as
form data (the same hidden field we are about to define). Thus, the script
renames $f orm dat a{' session_file'} to $session file so that in both cases
(the client’s first time at this point or subsequent script access by a continu-
ing client) it will have the sessi on_i d in the same variable name form.

if ($formdata{' session_file'} ne "")

$session file = $formdata{' session file'};

}

The script also renames some other variables using the same principle.
In doing so, the script uses a couple of routines in date.pl, as discussed in
Chapter 6, to manipulate date information so that it can use the date
information in a standardized way.

if ($formdata{'year'} ne "")

{

$current _year = "$formdata{' year'}";

}

el se

{

$current _year = "$the_current_year";

}
if ($formdata{' nonth'} eq "")
{
@ynonth = &make_nont h_array(& oday) ;
$current _nont h_nane = &nont hnane($current nont h) ;

}

el se

{
@ynonth =

&make_nont h_array(& day($formdata{' month'}, 1, $current _year));
$current _nmont h_nane = &ont hnane($formdata{' nonth'});

}

275

276

Chapter 13: The Groupware Calender

Printing the Calendar for the Current Month

The script prints the dynamically generated calendar in two cases. First,
the calendar is printed if the client has just logged on and is asking for the
first page ($formdata{' session_file'} ne ""). Second, the calendar is
printed if the client has already been moving through various pages and
has asked to view the calendar again ($formdata{' change_ nonth_year'}
ne ""). The Il means “or.” If either case is true, the script may proceed.

if ($formdata{' change_nonth_year'} ne "" ||
$ENV{' REQUEST METHOD } eq "CGET" &&
$formdata{' day'} eq "")
{

Displaying the Calendar Header

The script begins outputting the calendar by first printing the HTML cal-
endar header.

&header ("Selena Sol's G oupware Cal endar Deno:
$current _nmont h_nane - S$current _year");

print <<" end of_htm";

<CENTER>

<H2>$current _nont h_name - $current_year </ H2>
</ CENTER>

<TABLE BCRDER = "2" CELLPADDI NG = "4" CELLSPACING = "4">
<TR>
end_of _htm

Q You can modify everything between the print <<" end_of _htnm";

and the end_of _ht i, but be careful of illegal characters. For exam-
ple, @must be preceded by a backslash (selena\@foobar.com).
The script then prints the table header (Weekdays). Essentially, for every
day (foreach $day) in our list of days (@ay_nanes), the script prints the
day as a table header.

foreach $day (@ay_narnes)
{

Chapter 13: The Groupware Calender

print "<TH>$day</ TH>\ n";

}
print "</ TR\ n<TR>\ n";

Next, the script creates the variable $count _till _| ast_day, which it uses to
make sure that it does not add too many <TR>s. Also, the script clears out
a new variable, $weekday, which it uses to keep track of the two-dimen-
sional aspect of the calendar: the script breaks the calendar rows after
every seventh cell to represent a week. We will talk more about this later.

$count _till _last_day = "0";
$weekday = 0;

Displaying Calendar Days as Table Cells

For every day in the nynont h array, the script creates a cell for the calen-
dar. The array @ynont h, if you recall, is an array returned from the sub-
routine nake_nonth_array.

foreach $day_nunber (@ynonth)
{

The script begins by incrementing the two counter variables:
$count _till_l ast_day and $weekday.

$count _till_l ast_day++;
$weekday++;

The script must also make sure that it adds a break for every week to
make the calendar two-dimensional. Thus, when it has gone through
sets of seven days in this foreach loop, it resets $weekday to zero. In the
following code, the script uses these values to determine where it should
place the </ TR><TR>, making a new calendar row. When $weekday is
greater than 6, the script knows that it needs a </ TR><TR>, so by setting
the $weekday flag to zero, we notify the script a few lines later to insert
the row break.

$weekday = 0 if ($weekday > 6);

277

278

Chapter 13: The Groupware Calender

Next, the script prints a table cell for each day. Because we want to make
each of the numbers in each of the cells clickable so that someone can
click on the number to see a day view, the script must manage a great
deal of information here.

First, the script builds a variable called $vari abl e_li st, which is used
to create a long URL appendix to transfer information using urlencod-
ing. As we will discuss more specifically later, the routine that generates
the day views needs to have the day, year, and month values if it is to
bring up a day view. It must also have the $session_file value (as all the
routines in this script must), the name of the calendar database, and the
special tag vi ew day=on. So the script gathers all that information and
appends it to the $vari abl e_| i st variable.

$variable_|ist
$variabl e |ist
$variable list .
$variable_list .
$variable list .
$variable list .

"day=$day_nunber &ear =$current year";
" &ont h=$cur r ent mont h";
"&session_fil e=$session_file";

" &cal endar =$f orm dat a{' cal endar' }";
" &vi ew_day=on";

Then the script creates the calendar cell. Notice that the number in each
cell is made clickable by using urlencoding to tag the URL with all the
variables we want passed.

print "<TD VALIGN = \"top\" WDTH = \"150\">\n";

print "$day_nurnber </ A
>\n";

Adding Subject Listings to Calendar Cells

The cell is not yet complete. The script must also grab from the calendar
database the subject listings for all the entries on that day. In doing so,
the script makes sure that, if it cannot open the database file, it sends a
useful message to us for debugging. It uses the open_error subroutine in
cgi-lib.sol, passing the routine the location of the database file.

Chapter 13: The Groupware Calender

open (DATABASE, "$database file") ||
&open_error ($dat abase_file);

If it successfully opens the database file, the script goes through each
line, spl it ting the fields into their associated variables.

whi | e (<DATABASE>)

($day, $month, $year, S$usernane, $first_nane,
$l ast _nane, $enail, $subject, $tine, 3$body,
$dat abase_id nunber) = split (/\|/,$);

For every row searched, the script determines whether the day, month,
and year of each item on that row are equal to the day, month, and year
of the cell it is currently building.

if ($day eq "$day_nunber" && $nonth eq "$current nont h"
&% $year eq "S$currentyear")

{

If it was able to answer true to all the preceding conditions, the script
knows that it has found a match and prints the subject in that cell.

print "
$subj ect </ FONT>\ n";
} # End of if ($day eq "$day_nunber” && $nonth eq ...
} # End of while (<DATABASE>)

Once the script has checked all the lines in the database, it closes that
cell and moves to the next cell.

print "</ TD>\n";

If, however, the script reached the end of a week row, it must begin a new
table row for the next week. If $weekday is equal to zero, then the script
knows that it is time to begin a new row. Otherwise, it continues with the row.

if ($weekday == 0)

{
print "</ TR\ n";

279

Chapter 13: The Groupware Calender

280

By the way, here we use == instead of =. If we used =, Perl would
interpret the part inside the if () to be assigning the value of zero
to $weekday, and it would evaluate the whole process as true. That
would undercut the whole point of counting with $weekday.

NOTE

Before the script blindly prints another table row, it makes sure that it has
not reached the end of the month. If $count _ti || _| ast_day equals @ynont h,
it knows that there are no more days left and it should not begin a new
row. Notice that when we reference @ynont h without quotation marks, we
receive the numerical value of the number of elements in the array.

unl ess ($count _till _|ast_day == @ynont h)
{
print "<TR>";
} # End of unless ($count_till_last_day == @ynonth)

} # End of if ($weekday == 0)
} # End of foreach $day_nunber (@ynonth)

Displaying Footer Information for the Month View

Once the script has finished making all the cells for the calendar, it
prints the HTML footer.

print <<" end_of _htnm";

</ TABLE>

</ CENTER>

<BLOCKQUOTE>

For day-at-a-glance cal endar, click on the day nunber on the
cal endar above.

O, to see another 1996 nonth, choose one

end of _htm

To let the user select a different month to view, the script creates a select
box using the subroutine sel ect _a_nont h at the end of this script.

&sel ect _a nont h;
print "<P>Q, to see another year, select one\n";

Chapter 13: The Groupware Calender

Likewise, it creates a select box that allows the client to choose a new year
to view using sel ect _a_year at the end of this script.

&sel ect _a_year;
Then the script outputs the usual footer.

print <<" end_of _htm";
<p>
* Note: This calendar is best viewed by opening your
browser window to its naxi mumsize. And, you can only submt
anonth if the year field is cleared! <P>
</ BLOCKQUOTE>
<CENTER>
<INPUT TYPE = "submt" NAME = "change_nont h_year"
VALUE = "Change Month/ Year" >
<INPUT TYPE = "reset" VALUE = " ear this form'>
<INPUT TYPE = "subnit" NAME = "add_item forn¥
VALLE = "Add Iteni>
</ FCRW>
</ CENTER>
</ BADY>
</ HTM>
end_of _htm
exit;
} # End of if ($formdata{' change nonth_year'} ne "" |]|...

On the Web, the front page looks like Figure 13.3.

Displaying a Day View

In the preceding routine, the script made every number in every cell of
the calendar clickable so that the client could view the detailed descrip-
tions of the events scheduled for that day. In the urlencoded string it
built, the script included a tag view day = on. Here is where that tag
comes in handy. The following if test checks to see whether the person
has clicked on a numbers; if the person has, the test will evaluate to true.
If the test evaluates to true, the script prints the page header.

281

Chapter 13: The Groupware Calender

W

g ¥ s o B o i b e ol e B g - I

August - 1996

| Susduy | Mandsy Tuesdsy | Wedsesdyy | Thervdsy | Fridey | Satudey
1 [z E

F 3 g [z E E T

|1 L T |14 |15 F T

|12 Lz an 1 |z F= T

2= 2t 27 |z z ERED

Bor dayar a-glagie cabiodar, ook o Bie day undber of det oabs g ahome

l:ir.h—mh-"lﬁnﬂ.dnmlwm

Or.ia mn‘ﬂm’pn’.nh:—’mllm i

* Hone Thes caleadir 17 b mewred by opreng Four byows ef Waedes w0 dF (AR
nre Aad wrou con only niberd @ enth £ e pear Sel i clered!

Figure 13.3 The view month interface.

if ($formdata{'view day'} eq "on")

&header ("$current_nont h_nane $f ormdata{' day'},
$current _year");

print <<" end_of _htm";

<CENTER>

<H2>$current _nont h_nane $formdata{' day'},

$current _year </ H2>
</ CENTER>
end_of _htm

Next, the script opens the database again and looks for database rows
that match the requested day, month, and year.

282

Chapter 13: The Groupware Calender

open (DAYFILE, "$database_file") ||
&open_error ($dat abase_file);
whi | e (<DAYFI LE>)

{

Just as it did in the routine for generating subject lines for day cells, the
script pays attention only to database rows that match the client-defined
day, month, and year.

($day, $rmonth, $year, $username, $first_nane,
$l ast_nane, $enmail, $subject, $tine, $body,
$dat abase_id_nunber) = split (/\|/,$);

if ($day eq "$formdata{' day'}" &

$nmonth eq "$formdataf{' nonth'}" &&
$year eq "$current_year")

{

Next, the script sets the $item found flag so that it can keep track of
whether it has found an item in the database.

$itemfound = "yes";

The script then prints an <HR>-delimited, detailed list of events of the day,
followed by a standard HTML footer.

print <<" end_of _htm";
Ti ne: </ B> $TI ME{ $t i ne}

Subj ect : </ B> $subj ect

Poster: </ B>
$first_nanme
$l ast _nane</ A>

Body: </ B><BLOCKQUOTE>$body</ BLOCKQUOTE>
<P><CENTER><HR W DTH = " 50% ></ CENTER><P>
end_of _htm
} # End of if ($day eq "$formdataf{' day' }" &&)
} # End of while (<DAYFl LE>)

If the script was not able to find any items in the database, it must let the

client know. So if $item found was never set to yes, the script sends the
client a note of explanation.

283

Chapter 13: The Groupware Calender

if ($itemfound ne "yes")
{
print "<BLOCKQUOTE>It appears that there are no
entries posted for this day. Wuld you like to
add one?</ BLOCKQUOTE>" ;
}
print <<" end_of _htm";
<CENTER>
<INPUT TYPE = "hi dden" NAME = "day" VALUE = "$formdata{' day'}">
<I NPUT TYPE = "hi dden" NAME = "nonth"
VALUE = "$formdata{' month'}">
<INPUT TYPE = "hi dden" NAME = "year" VALUE = "$current_year">
<INPUT TYPE = "submt" NAME = "nodify_itemfornt
VALLE = "Modify Item' >
<INPUT TYPE = "submt" NAME = "delete_itemforny
VALUE = "Del ete Iten'>
<INPUT TYPE = "submt" NAME = "add_item fornt
VALUE = "Add Itenm>
<INPUT TYPE = "subnit" NAME = "change_nont h_year"
VALUE = "V ew Mont h" >
</ FORW»</ CENTER></ BADY></ HTM_>
end_of _htm
exit;

}

Figure 13.4 shows the day view interface on the Web.

Authenticating the User

Allowing clients to view the calendar is one thing. Letting them modify
the calendar database is another. The following routine checks to see
whether the client is authorized to do anything in addition to viewing.
The script passes Get Sessi onl nf o, which is contained in auth-lib.pl, three
parameters: the $session_fil e value (which will be nothing if one has not
yet been set), the name of this script (so that it can provide links), and
the associative array of form data we got from cgi-lib.pl.

($session_file, $session_usernane, $session_group,
$session_first_name, $session_| ast_nane,
$session_email) =
&Cet Sessi onl nfo($session file, $this_script_url,

*formdata);

284

Chapter 13: The Groupware Calender

Festioape - My 14, 199

I_I_I_ Bl =|o|x] »

May 14, 1996

Tt 5 FM
Bulijeci: Back Divaft Tree
Peaawn Soisaa S0
By

Thie finst drak of the O Boak is dee oy, don's be da!

Tirwee1 ¥ FM
Selrjert: Dur Date Party
Bady:

Bep sverpones,

Step on ower ab oy pad for a draft sebmissen pary?

Figure 13.4 The day view.

Displaying the Add Event Form

Once the client has been authenticated, the script determines the
desired action. This first routine checks to see whether the client wants
to add an item. If so, the script presents a form that the client uses to
submit information for each of the database fields.

if ($formdata{'add_itemform} ne "")

&header ("Add an Itemto Selena's Goupware Cal endar Deno");

The subroutine subni ssi on_f ormat the end of this script is used to generate a
form with input fields for every database item that can be manipulated by the
client.

285

286

Chapter 13: The Groupware Calender

&subm ssi on_form

The script then prints a standard HTML footer and quits.

print <<"

end_of _htm";

<CENTER><P>
<INPUT TYPE = "submit" NAME = "add_item! VALUE = "Add

Item >

<INPUT TYPE = "reset" VALUE = "Qear This Form >

<INPUT TYPE = "submt" NAME = "change_nont h_year" VALUE
= "Vi ew Mont h" >

</ CENTER></ BODY></ HTM_>

end_of _htm

exit;

}

Figure 13.5 shows what the add form looks like on the Web.

L i L R Gl L T e e——

||| @|v|m(ald] o)

Hame Zelera Sal
Emadl sebmaiieE or

Sabjece [Eack Drat Cus
Yeu [1d6 5]

Tiram |5.|'-"l.v| i
Mamh |I-Iq.r i
Dy |'Il1 i

tirar doafc of che I'.'Iﬁ BanE 18 dus E
FrooBSR"T E=E JaLE!

Figure 13.5 The calendar add form.

Chapter 13: The Groupware Calender

Adding an Event to the Database

Once the client submits a new event, the script must be prepared to add
the item to the calendar database. The following routine does just that.

if ($formdata{'add_item} ne "")
{

The routine begins by printing the page header.

&header ("Adding an Itemto the Cal endar Database");

Next, the script makes sure that the client has filled out all the necessary
fields in the submission form. The script gets a list of the variable names
(keys) associated with the associative array % or m dat a given to us by cgilib.pl.

@ormdata = keys (% ormdata);

For every element in the list array @ormdata, the script checks to see
whether the associated value in % or m dat a has content. If it doesn’t, the
script sends an error message and quits.

foreach $vari abl e_nane (@ormdata)

if ($formdata{$variable name} eq "" &&
$vari abl e_name ne "cal endar")
{
print <<" end_of _htm";
<BLOCKQUOTE>
I'"mvery sorry but you nust enter sonething in
the $vari abl e_name i nput box. Pl ease press
the back button and try again.
</ BLOCKQUOTE></ BODY></ HTM_>
end_of _htm
exit;

}

On the other hand, if the client entered data into all the fields, the script
adds the new entry. First, it uses the subroutine Get Fi | eLock in cgi-lib.sol
to create a lock file to protect database integrity during modification.

287

288

Chapter 13: The Groupware Calender

The script passes as the sole parameter the location of the lock file used
by this program. If the script makes it past the lock file routine, it means
that the script is the sole owner of the database file and can safely make
changes.

&et Fi | eLock ("$l ock_file");

Before it can add a new entry, though, the script must acquire a unique
number from the counter file by using the subroutine counter in cgi-
lib.sol. counter receives as its one parameter the location of the counter
file used by this program.

&count er ($counter _file);
The unique counter number is essential, because every row must be
uniquely identifiable for modifications and deletions. The numbers
don’t need to be in any order, and there can be gaping holes between

NOTE
numbers (as when items are deleted), but they must be unique.

Next, the script writes the contents of the new entry to the database file,
appending (>>) the new data to the end of the existing list of items.

open (DATABASE, ">>$database file") || &open_error($database file);

Then it formats the incoming form data so that the new event will be
confined to one database line. To do this, the script changes (=~ s/) all
occurrences (/g) of newlines (\n) into
, and all occurrences of two
hard returns (\r\r) into <P>.

foreach $val ue (@i el d_val ues)

$f orm dat a{ $val ue} =~ s/\n/
/g;
$f orm dat a{ $val ue} =~ s/\r\r/<P>/g;
$f or m dat a{ $val ue} =~ s/\|/:/qg;

}

Finally, the script simplifies some of the variables and generates the new
database row.

Chapter 13: The Groupware Calender

if ($session_first_nane eq "")

{

$session_first_nane = "$formdata{' first_name'}";
$session_| ast_name = "$formdata{'last_name'}";
$session_enail = "$formdata{ email'}";

$subj ect = "$formdata{' subject'}";
$event tine = "$formdata{' time'}";
$month = "$formdataf' nonth' }*;
$day = "$formdata{' day' }";

$year = "$formdata{' year'}";

$body = "$formdata{' body'}";

$new row = "";

$new row . = "$day\ | $nont h\ | $year\ | $sessi on_user nane\ | *;
$new row . =

"$session_first_nane\| $sessi on_| ast _nane\ | $sessi on_emai I\ | ";
$new row . = "$subj ect\ | $event _ti ne\ | $body\ | $i t em nunber";

The script now safely adds the new database row to the database file and
deletes the lock file so that someone else may modify the database file.

print DATABASE "$new row n";

cl ose (DATABASE);
&Rel easeFi | eLock ("$l ock_file");

Don’t forget the newline at the end of the database row so that the
next item entered will be on its own line.

NOTE

Finally, the script prints the standard page footer.

print <<" end_of _htm";
<H2><CENTER>Your item has been added, thanks. </ H2>
<INPUT TYPE = "hi dden" NAME = "day" VALUE = "$formdata{' day'}">

<INPUT TYPE = "hi dden" NAME = "nonth" VALUE = "$formdata{' nonth'}">
<INPUT TYPE = "hi dden" NAME = "year" VALUE = "$current_year">
<INPUT TYPE = "subnit" NAME = "change_nont h_year"

VALLE = "Return to the Cal endar">
</ BCDY></ HTM.>
end_of _htnm

Figure 13.6 shows the response on the Web.

289

290

Chapter 13: The Groupware Calender

Huetacape - [fididng o ltem 1o the Cdesds atabare]

Ele Eci Ve Go Heobrrad: Opbore Deeciss Windew Heg
b 2] I el TR T B
ﬂ G Ic |27 /mams Ioohar com e b Calarcla o slarder o d

Your item has been added, thanks.

Aslumiothe Calander |

Huml [[oosrent: o | =7

| S

Figure 13.6 Web response.

Sorting the Calendar Database by Time

We are not finished with the add quite yet. The script must also sort the
entries in the database file so that when clients choose day views, their
entries come out ordered by time. Again, the script creates the lock file so
that no one else can modify the database file while it is being modified.

&et Fil eLock ("%l ock_file");
open (DATABASE, "$database file") || &open_error($database file);

The script adds every row in the database file to an array called @ata-
base fields.

whi | e (<DATABASE>)

{
@lat abase _fields = split (/\|/, $);

Next, it creates a variable called $comment _r ow, which is used to hold com-
ment lines in the database file. We do not want them sorted along with
the rest of the items.

if ($_ =~ /ACOWENT:/)
{

$comment_row .= $_;

}

Chapter 13: The Groupware Calender

If the database row is not a comment row, the script finds the field that has
the time of the event and appends it to the front of the database row. (So it
occurs twice: once at the beginning of the line and again in the middle
somewhere.) The script also adds (pushes) the whole string ($sortabl e_row)
into a growing array called @lat abase_rows. (We’ll explain why in the next
paragraph.)

el se

{

$sortabl e_row = "$dat abase fiel ds[$field numtinme] —~";
$sortable row .= $_;

push (@at abase_rows, $sortable_row;

}
}

When all the “modified” rows have been added to the array
@lat abase_rows, the script sorts the array. This is why we appended the
time to the beginning of each of the rows: the sort routine sorts all the
database items by event time.

@orted_tenp_dat abase = sort (@atabase_rows);

There is no need to sort on the date, because database rows are

already displayed by date. We need only sort the items by time with-

in a day.
NOTE ... y ..
Now the script goes through @orted_t enp_dat abase and takes out the
extra event _tine string at the beginning of each database row, and we’re
back where we started except that the rows are sorted. The script splits
the string at ~~ and then pushes the part of the string that corresponds to
the original database row back into the array @i nal _sort ed_dat abase.

foreach $dat abase_row (@orted_t enp_dat abase)

{

($extra_event _tine, $true_database row) = split (/~~/,
$dat abase_row);

push (@i nal _sorted_dat abase, $true_dat abase_row);

}
cl ose (DATABASE);

291

292

Chapter 13: The Groupware Calender

Next, the script modifies the original database file so that it represents the
sorted order. To do this, it creates a temporary file to which it reprints all
the comment rows stored in the variable $conment _row.

open (TEMPFILE, ">$tenp_file") || &open_error($tenp_file);
print TEMPFI LE "$conmment _row';

Then, for each of the database rows stored in @i nal _sort ed_dat abase, the
script prints to the temporary file.

foreach $row (@i nal _sorted_dat abase)

{
print TEMPFILE "$row';

}
cl ose (TEMPFILE);

Finally, the script copies the temporary file over the original database file
using the renane command so that the resulting file represents the sort.
Then the lock file is deleted.

renane ($tenp _file, $database file);
&Rel easeFi | eLock ("$lock _file");
exit;

}

Displaying the Modification Form
Next, if asked to do so, the script prints the modify event form.

if ($formdata{' nodify_itemfornmi} ne "")

{
&header ("Mdify and Item);

First, it prints the basic header, including the hidden fields, which must
be transferred to the modification routines so that they will have all the
user information necessary to re-create database rows.

Because the modification routines will compare incoming form data
to database row information, this information must come in with the rest
of the form data.

Chapter 13: The Groupware Calender

print <<" end_of _htnm";

<INPUT TYPE = "hi dden" NAME = "user nane"
VALUE = "$sessi on_user nane" >

<INPUT TYPE = "hi dden" NAME = "first_name"
VALUE = "$session_first_nane">

<INPUT TYPE = "hi dden" NAME = "| ast_nane"
VALUE = "$session_| ast _nane" >

<I NPUT TYPE = "hi dden" NAME = "enail"
VALUE = "$sessi on_enai | ">

<CENTER>

<H2>$current _nont h_name $f orm data{' day'}, $current_year </ H2>

</ CENTER>

end_of _htn

The script then begins a table that will display all the items posted by the
client on the day of interest. But, for the time being, instead of printing
the table immediately, it builds it in a variable called $t abl e.

$table .= "<TABLE BCRDER = \"1\" CELLSPACI NG = \"2\"
CELLPADDI NG = \"2\" WDTIH = \"1100\">\n";

$table .= "<TR>\n";

$table .= "<TH>Mdify Itenx/ TH\n";

Similarly, the script adds the header row to $tabl e.

foreach $name (@i el d_narres)

{
$tabl e . = "<TH>$name</ TH>\ n";
}

$table .= "</ TR\ n";

Then the script opens the database and checks for items that correspond
to the user as well as the requested day, month, and year.

open (DAYFILE, "$database_file") ||
&open_error ($dat abase_file);
whi | e (<DAYFI LE>)

chop $; # Make sure to take out the new ine.

Next, it splits the database row as usual, but this time it also creates the
list array @lat abase_val ues, which will be discussed soon.

293

294

Chapter 13: The Groupware Calender

($day, $nonth, $year, $usernane, $first_nane,

$l ast _nane, $email, $subject, $time, $body, $database id_nunber) =
split (/\|/,$);

@lat abase_val ues = split (/\|/,$);

The script is directed to pay attention only to items specific to user, day,
month, and year.

if ($day eq "$formdata{' day'}" &&
$nmonth eq "$formdataf{' nonth'}" &&
$year eq "$formdata{' year'}" &&
$sessi on_user name eq " $user nane")

{

The script also flags the fact that it found an item.

$itemfound = "yes";

Then the script continues adding to $tabl e by adding the table row cor-
responding to the database row that was matched. Also, it adds a radio
button so that the client can select the table row to modify.

$table .= "<TR\n";

$table .= "<TD ALIGN = \"center\">";

$table .= "<INPUT TYPE = \"radio\" NAME =\"itemto_nodify\"";
$tabl e . = "VALUER\ " $dat abase_i d_nunber\ " ></ TD>\ n";

foreach $val ue (@at abase_val ues)

$tabl e .= "<TD>$val ue</ TD>\ n";
}
$table .= "</ TR\ n";
}
}
$tabl e . = "</ TR></ TABLE><P><CENTER>\ n";

If $i tem found is still not equal to yes, it means that we did not match any
items and that the script should send the client a note of explanation.

if ($itemfound ne "yes")

{
print <<" end of _htm";

Chapter 13: The Groupware Calender

<BLOCKQUOTE>

I'"msorry, you have not posted any itens for this day,

so there is nothing for me to nodify.

</ BLOCKQUOTE><CENTER>

<INPUT TYPE = "subnit" NAME = "change_nont h_year"
VALLE = "Vi ew Mont h" ></ BCDY></ HTM.>

end_of _htm

exit;

}

If, however, $i tem f ound equals yes, the script prints $t abl e.

print "$table";

In the case of modification, the client also needs a form similar to the
add form so that he or she can make any desired modifications. We use
the subni ssi on_f orm subroutine at the end of this script, passing it the
parameter nodi fy so that it will know to output that form.

&subni ssi on_f orm("nodi fy");
Finally, the script prints a standard footer and quits.

print <<" end_of _htm";
<CENTER><P>
<BLOCKQUOTE><I >Not e: Make sure to select an itemto modify using the
radi o buttons on the top table. Then change any of the forminputs
you want changed, |eaving the others as they are. Feel free to cut
and paste fromthe top table to the bottomtable if you only need to
change a small anount of
t ext </ | ></ BLOCKQUOTE>
<INPUT TYPE = "subnit" NAME = "nodify_itent

VALUE = "Modify Selected Item >
<INPUT TYPE = "reset" VALUE = "Qear This Form >
</ CENTER></ FCRV»</ BODY></ HTM.>
end_of _htm
exit;

}

On the Web, the modify form looks like Figure 13.7.

295

Chapter 13: The Groupware Calender

Fetirapn |Maddp avd o)

| |n] @||z(8]#])

May 6, 19946

| Madtify Trers [Ty |Bfarth | Vear |Usersame First Mame [Last Mame [Emsil Addrecs
& fi |5 1596 |sekena Zelera Sol eelenaiietl org

Hame Selena 5ol

Email elzadellan
Sobjen [
Tewr |1336

Tme [H
Mo [

Day [0 3]

Figure 13.7 Calendar modify form.

Displaying the Delete Event Form

Next, the script prints a form for item deletion if requested by the client.

if ($formdata{'delete_itemfornm} ne "")
{
&header ("Delete an Itent);
print "<CENTER>\n";
print "<H2>$current _nont h_nane $form data{' day'},
$current _year </ 2>\ n";
print "</ CENTER>\n";

296

Chapter 13: The Groupware Calender

Just as it did for the modify form, the script creates the $t abl e variable and
prints the delete form (or the error message if no items were found). First,
the script outputs the header.

$table = "";

$tabl e .

$tabl e .
$table .
f or each
{
$tabl e

}
$tabl e .

"<TABLE BCRDER = \"1\" CELLSPACING = \"2\"
CELLPADDI NG = \"2\" WDTH = \"1100\">";

"\ n<TR>\ n";

"<TH>Del ete |tenx/ TH>";

$narme (@i el d_nanes)

.= "<TH>$nane</ TH>\ n";

"</ TR\ n";

Then it creates the possible delete rows.

open (DAYFILE, "$database file") || &open_error($database file);
whi | e (<DAYFI LE>)

{

chop $_;

($day, $nonth, $year, $username, $first_nane,
$l ast _nane, S$enail, $subject, $tine, $body,
$dat abase_id_nunber) = split (/\|/,$);

@lat abase_values = split (/\|/,$);

if ($day eq "$formdata{' day'}" &&
$month eq "$formdataf' nonth'}" &&
$year eq "$formdata{' year'}" &&
$sessi on_user name eq "3$user nane")

{

$itemfound = "yes";

$tabl e .
$table .
$tabl e .

$table .

"<TR>\n";
"<TD ALIGN = \"center\">";
"<INPUT TYPE = \"radio\"
NAME =\"itemto_delete\"";
"VALUE=\ " $dat abase_i d_nunber\"></ TD>\ n";

foreach $val ue (@at abase_val ues)

{

297

Chapter 13: The Groupware Calender

$table .= "<TD>$val ue</ TD>\ n";

}
$table .= "</ TR\ n";

}
}

Next, if necessary, the script prints an error message.

if ($itemfound ne "yes")
{
print <<" end_of _htm";
<BLOCKQUOTE>
I'"msorry, you have not posted any itens for this day,
so there is nothing for ne to del ete.
</ BLOCKQUOTE><CENTER>
<INPUT TYPE = "subnit" NAME = "change_nont h_year"
VALLE = "Vi ew Mont h" ></ BCDY></ HTM.>
end_of htm
exit;

}

print <<" end of _htm";

$t abl e

</ TR></ TABLE><CENTER><P>

<I NPUT TYPE = "hi dden" NAME = "day"
VALUE = "$formdata{' day'}">

<INPUT TYPE = "hi dden" NAME = "nonth"
VALLE = "$formdata{' nonth' }">

<INPUT TYPE = "hi dden" NAME = "year" VALUE = "S$current_year">

<INPUT TYPE = "submt" NAME = "del ete itent
VALUE = "Del ete Selected Item >

<INPUT TYPE = "submt" NAME = "change_nonth_year"
VALLE = "Return to the Cal endar">

</ CENTER></ FORW»</ BADY></ HTM_>

end_of _htm

exit;

}

On the Web, the delete form looks like Figure 13.8.

298

Chapter 13: The Groupware Calender

Feotirapss |ckss a0 llees

e] TR T =T T D

. i o merren bl b g e iy

May 6, 1996
| Toelmte Toem |Tray [Afarib | Vear (Username |First Hame Last Wame Ervail Address | Subjece | Evert Time
| & ns|5 1«;-::s|m |5-Hu- Sl seienaiBiel org Ixmm;|z1m

Figure 13.8 The calendar delete form.

Deleting an Event from the Database

If asked, the script deletes an item from the database.

if ($formdata{' delete_item} ne "")
{

The script must be sure that the client actually chose an item to delete
with the radio buttons.

if ($formdata{'itemto_delete'} eq "")
{
&header ("Wbopsy");
print <<" end_of _htm";
<CENTER><
H2>Del ete an Itemin the Database Error</H2>
</ CENTER>
<BLOCKQUOTE>
I"'msorry, | was not able to nodify the database
because none of the radio buttons on the table was

299

300

Chapter 13: The Groupware Calender

sel ected so | was not sure which itemto delete.
Wul d you pl ease make sure that you select an item
\"and\" fill in the newinformation. Just press the
back button. Thanks.

</ BLOCKQUOTE>

end_of _htm

exit;

}

First, the script locks the database file as it did for the add item routines.

&Cet Fi l eLock ("$l ock_file");

Then it creates a temporary file as before.

open (TEMP, ">$tenmp file") || &open_error($tenp_file);
cl ose (TEWP);

If there is data in the database file, the script checks to see which item
matches the deletion.

open (DATA "$database file") || &open_error($database file);
whil e (<DATA>)

{
@repfields=split(/\|/,$);

To do so, the script gets the unique database ID for each database row
and chops off the newline.

$dat abase_id = pop (@repfields);
chop $dat abase_i d;

If the unique database ID of the row is not equal to the database ID num-
ber submitted by the client, the script knows not to delete that row.
Instead, it prints it to the temporary file.

if ($database_id ne "$formdataf{'itemto _delete'}")

open (TEMP, ">>$tenp file") ||
&open_error ($tenp_file);

print TEMP "$ ";

close (TEWP);

Chapter 13: The Groupware Calender

}
} # End of while (<DATAS)

Once it has gone through all the items in the database, the script copies
the temporary file over the database file; the deletion will have been
made, because the row that matched the database ID number will not
have been printed to the temporary file. Then the script closes the data-
base file and deletes the lock file so that others can modify the database.

cl ose (DATA);
renane ($tenmp_file, $database file);
&Rel easeFi | eLock ("$l ock_file");

Finally, the script prints a standard footer.

&header ("Deleting an Itemfromthe Cal endar");
print <<" end_of _htm";
<CENTER>\ nYour item has been del et ed
</ FONT>\ n<P>
<I NPUT TYPE = "hi dden" NAME = "day"
VALLE = "$formdat a{' day' }">
<I NPUT TYPE = "hi dden" NAME = "nonth"
VALUE = "$formdataf{' month' }">
<INPUT TYPE = "hi dden" NAME = "year" VALUE = "S$current_year">
<INPUT TYPE = "submt" NAME = "change_nont h_year"
VALLE = "Return to the Cal endar">
</ CENTER></ BODY></ HTM_>
end_of _htm
exit;

}

Modifying an Event in the Database
The script can also be used to modify an item.

if ($formdata{' nodify item} ne "")
{

First, the script must be sure that the client chose an item to modify.

&header ("Modi fy an Itemin the database");
if ($formdata{'itemto_nodify'} eq "")

301

302

Chapter 13: The Groupware Calender

{

print <<" end_of _htm";

<CENTER><H2>Modi fying an Itemin the Database Error</H2></ CENTER>

<BLOKQUOTE>

I"'msorry, | was not able to nodify the database because none of the
radi o buttons on the table was sel ected so | was not sure which item
to nodify. Wuld you pl ease nake sure that you select an item\"and\"
fill in the newinformation. Just press the back button. Thanks.

</ BLOCKQUOTE>

end_of _htm

exit;

}

As it did before, the script creates the lock file and the temporary file.

&Get Fi | eLock ("$l ock_file");
open (TEMPFILE, ">$tenp_file") || &open_error($tenp_file);
open (DATABASE, "$database file") ||

&open_error ($dat abase_file);

And as it did for deletion, the script gets the unique database ID number
for each row by popping it out of the @i el ds array. But this time, it makes
sure to add the database ID number into the array so that it will have a
whole array again (push (@ields, $itemid)). Finally, as usual, the script
chops off the newline.

whi | e (<DATABASE>)

{

@ields =split (/\|/, $);
$itemid = pop(@ields);
chop $itemid;

push (@ields, $itemid);

If the item ID of the database row matches the one that the client submit-
ted, the script renames the @iel ds array to @l d_fiel ds. Otherwise, it
adds the line to the growing list of database rows in $new dat a.

if ($itemid eq "$formdata{'itemto nodify'}")

{
@l d_fields = @ields;
}

Chapter 13: The Groupware Calender

el se

{

$new data .= "$ ";

}
} # End of while (<DATABASE>)

Once it gets through all the items in the database, the script should have
found one that matched the item selected by the client, and the rest
should have been stored in $new data. Now the script prints the rows in
$new dat a to the temporary file.

print TEMPFI LE "$new data";

Then it prepares to substitute the new data submitted by the client for
the old data that was in the database. First, the script initializes a couple
of variables: $count er and $new | i ne. $count er will be used to keep track of
the database fields that we have edited, and $new | i ne will be used to cre-
ate the new database row.

$counter = 0;
$new line = "";

Now the script begins going through the list of fi el d_val ues as defined in
the setup file.

until ($counter >= @i el d_val ues)

{

$value = "";
$val ue = "$fi el d_val ues[$counter]";

Recall that arrays begin with a zero so that the first array element is
Q $arraynare[0] . In this case, the script assigns the current element in

the count of field values to $val ue, thus going through every field in
the database.
If the formdat a variable associated with that field does not have a value,
the script adds the “old” field value stored in @I d_fi el ds to the $new | i ne
variable.

303

Chapter 13: The Groupware Calender

if ($formdata{$val ue} eq "")
{

$new line .= "$ol d_fiel ds[$counter]|";

}

On the other hand, if the client submitted new information, the script
formats the information as it did for the add routine and adds the result-
ing value to $new | i ne.

el se
{
$f or m dat a{ $val ue} =~ s/\n/
/g;
$f orm dat a{ $val ue} =~ s/\r\r/<P>/g;
$f orm dat a{ $val ue} =~ s/\ |/~ ~/g;

if ($formdata{$value} eq "")
{
$f or m dat a{ $val ue} = " <CENTER>- </ CENTER>";

$new | ine .= "$f ormdat a{$val ue}|";
} # End of else

Then it increments the counter by 1 so that the loop goes through for
every field in a database row. Once the loop is finished, the script closes
the database.

$count er ++;
} # End of until ($counter >= @i el d_val ues)
chop $new |ine; # take off last |

Next, the script closes everything, copies the temporary file over the orig-
inal, and releases the lock file.

print TEMPFILE "$new |ine\n";
cl ose (TEMPFILE);
cl ose (DATABASE);

renane ($tenp_file, $database file);
&Rel easeFi | eLock ("$lock file");

Then it prints the usual footer.

304

Chapter 13: The Groupware Calender

print <<" end_of _htnm";
<CENTER><H2>Your |tem has been Modi fi ed</ H2>
<I NPUT TYPE = "hi dden" NAME = "day"
VALLE = "$formdat a{' day'}">
<INPUT TYPE = "hi dden" NAME = "nonth"
VALLE = "$formdata{' nonth'}">
<INPUT TYPE = "hi dden" NAME = "year" VALUE = "$current_year">
<INPUT TYPE = "subnmit" NAME = "change_nonth_year"
VALLE = "Return to the Cal endar">
</ CENTER></ BODY></ HTM.>
end_of _htm

Again, it is time to sort the entries in the database file so that when people
choose day views, their entries are ordered by time. The script creates the
lock file so that no one else can modify the database file while we are
modifying it.

&Get Fi l eLock ("%l ock_file");
open (DATABASE, "$database file") || &open_error($dat abase file);

Then the script adds every row in our database file to the list array @at a-
base fiel ds and creates $conment _r ow as before.

whi | e (<DATABASE>)

{
@lat abase_fields = split (/\|/, $));
if ($_ =~ /"COWENT:/)

{

$coment_row .= $_;

}

If the database row is not a comment row (COWENT:), the script finds the
field that has the time of the event and appends it to the front of the
database row. It also adds (pushes) the whole string ($sortabl e_row) into a
growing array called @lat abase_r ows.

el se
{
$sortabl e row = "$dat abase_fiel ds[$fiel d numtime] ~~";
$sortable row .= $_;
push (@at abase_rows, $sortable_row;

305

Chapter 13: The Groupware Calender

When it has added all the modified rows to the array @at abase_rows, the
script sorts @lat abase_r ows.

@orted_tenp_dat abase = sort (@lat abase_rows);

Next, the script goes through @orted_t enp_dat abase and takes out the
extra event _ti me string at the beginning of each database row.

foreach $dat abase_row (@ort ed_t enp_dat abase)

{

($extra_event _tine, $true_database_row) =
split (/:/, $database_row;
push (@i nal _sorted_dat abase, $true_database row);

}
cl ose (DATABASE);

Then the script creates the temporary file for the modification as it did
for the addition.

open (TEMPFILE, ">$tenp file") ||
&open_error ($tenp_file);
print TEMPFILE "$comrent _row';

Next, for each of the database rows stored in @i nal _sorted_dat abase, the
script prints to the temporary file.

foreach $row (@i nal _sorted_dat abase)

{
print TEMPFILE "$row';

}
cl ose (TEMPFILE);

Finally, the script copies the temporary file over the original database file so
that the resulting file will represent the sort. Then the lock file is removed.

rename ($tenp_file, $database file);
&Rel easeFi | eLock ("$l ock _file");
exit;

}
306

Chapter 13: The Groupware Calender

Displaying the Default Error

The script adds a default in case clients got through everything without
finding what they wanted (probably because they pressed Return when
typing into a text box).

&header (" Woopsy") ;
print <<" end_of _htm";
<BLOCKQUOTE>l ' msorry, you are not allowed to press the Return key
when typing in your subject. Please press the back button and try
agai n. </ BLOCKQUOTE><CENTER>
<INPUT TYPE = "submt" NAME = "change_nont h_year"
VALLE = "Return to the Cal endar">
</ CENTER></ BODY></ HTM_>
end_of _htn

The make_month_array Subroutine

The make_nonth_array subroutine is used to generate the month arrays
used by the main routine.

sub nake_nonth_array

{

First, the subroutine defines some variables that will be local to this sub-
routine.

local ($juldate) =$[0];

| ocal ($nont h, $day, $year, $neekday) ;

| ocal ($t enpj dat e, $f i r st weekday, $nundays, $| ast weekday) ;
| ocal (@yarray);

Next, the subroutine defines variables based upon the passed parameter.

($month, $day, $year, $weekday) = & date($jul date);

Then nmake_nont h_array makes a new date based on the first of the month.

$tenpj date = & day($nonth, 1, $year);

307

Chapter 13: The Groupware Calender

make_nont h_array also gets the weekday of the first of the month and then
builds @yarray to be passed to the main routine.

($nont h, $day, $year, $weekday) = & date($tenpjdate);
$fi rst weekday = $weekday;
$currentmonth = "$nont h";
$currentyear = "$year”;
$nont h++;
if ($nonth > 12)
{
$nmonth = 1;
$year ++,
}
$tenpj date = & day($nonth, 1, $year);
$t enpj dat e—
($nont h, $day, $year, $weekday) = & date($tenpjdate);
$nundays = $day;
$l ast weekday = $weekday;

for ($x = 0; $x < $firstweekday; $x++)

{
$nyarray[$x] =" ";
} # End of for

for ($x = 1; $x <= $nundays; $x++)

{
$nyarray[$x + $firstweekday - 1] = $x;

}

for ($x = $l astweekday; $x < 6; $x++)
{

push(@vyarray,"");

}

return @vyarray;
}

The CgiRequire Subroutine

This subroutine checks to see whether the file that we are trying to require
exists and is readable by us. This subroutine provides developers with an
informative error message when they’re attempting to debug the scripts.

308

Chapter 13: The Groupware Calender

sub Cgi Require
{

First, the @equire_fil es array is defined as a local array and is filled with
the filenames sent from the main routine.

local (@equire files) = @;

The subroutine then checks to see whether the files exist and are read-
able. If they are, the files are loaded.

foreach $file (@equire_files)

{

if (-e"$file" && -r "$file")
{
require "$file";

}

If any of the files are not readable or do not exist, the subroutine sends
an error message that identifies the problem.

el se

{

print "I'msorry, | was not able to open
$file. Wuld you please check to make sure
that you gave ne a valid filename and that the
permssions on $file are set to allow ne
access?";

exit;

}
} # End of foreach $file (@equire_files)
} # End of sub Cgi Require

The select_a_month Subroutine

The sel ect _a_nont h subroutine is used to generate a select list of months
that the client can use to select months in the various forms throughout
the script. It is a straightforward routine with no new syntax.

sub sel ect_a_nonth

{

309

310

Chapter 13: The Groupware Calender

print "<SELECT NAME=\"nonth\">\n";
foreach $nmonth (@mont h_nanes)

if ($rmonth ne "$current_nont h_nane")

{
print "<CPTION VALUWE =
\ " $MONTH_ARRAY{ $nont h}\ " >$nont h\ n";

}

el se

{
print "<CPTI ON SELECTED VALUE =

\ " $MONTH_ARRAY{ $rmont h}\ " >$nont h\ n";
}

}
print "</ SELECT>\n";

}

The select_a_year Subroutine

As with sel ect _a_nmonth, the sel ect_a_year subroutine generates a select
input tag and options for the client to select from a list of years. The only
thing of note in this subroutine is that $t he_current_year is defined in the
setup file and must be changed annually.

sub sel ect_a_year

{
print "<SELECT NAME = \"year\">\n";

for ($i = $the current_year; $i < $greatest_year; $i++)
{
if ($i eq "$currentyear")
{
print "<CPTION SELECTED VALUE = \"$i\">%i\n";
}
el se
{
print "<CPTICN VALUE = \"$i\">%i\n";
}
}
print "</ SELECT>\n";
}

Chapter 13: The Groupware Calender

The submission_form Subroutine

The submi ssi on_f or m subroutine is used to generate a form that clients
can use to submit new events to the database. As with the previous sub-
routines, the logic includes no new Perl tricks or syntax.

sub subni ssion_form

{
local ($type of form = @;

if ($session_first_name ne "")
{
print <<" end_of _htm";
<TABLE BCRDER = "0" CELLSPACING = "2"
CELLPADDI NG = "2">
<TR ALIGN = "LEFT">
<TH>Nane</ TH>
<TD>$sessi on_first_name $sessi on_| ast _nane</ TD>
<TR ALIGN = "LEFT">
<TH>Emai | </ TH>
<TD>$sessi on_emai | </ TD>

</ TR>
end_of _htm
}
el se
{
print <<" end_of _htm";

<TABLE BCRDER = "0" CELLSPACING = "2"
CELLPADDI NG = "2">
<TR ALIGN = "LEFT">
<TH>Fi r st Nane</ TH>
<TD><INPUT TYPE = "text" NAME = "first_nanme"
Sl ZE = "20" NMAXLENGTH = "20"></ TD>

</ TR>

<TR ALIGN = "LEFT">

<TH>Last Name</ TH>

<TD><I NPUT TYPE = "text" NAME = "l ast_nane"
SIZE = "20" MAXLENGTH = "20"></ TD>

</ TR>

<TR ALIGN = "LEFT">

<TH>Emai | </ TH>

<TD><I NPUT TYPE = "text" NAME = "emai|l" SIZE = "20"
MAXLENGTH = " 20" ></ TD>

</ TR>

311

Chapter 13: The Groupware Calender

end_of _htm
}
print <<" end_of _htm";
<TR ALIGN = "LEFT">
<TH>Subj ect </ TH>
<TD><I NPUT TYPE = "text" NAME = "subject" SIZE = "20"
MAXLENGTH = " 20" ></ TD>
</ TR>
<TR ALI QN = "LEFT">
<TH>Year </ TH>
<TD>>
end_of _htm
&sel ect _a_year;
print <<" end_of _htm";
</ TD>
</ TR>
<TR ALIGN = "LEFT">
<TH>Ti me</ TH>

<TD>>
<SELECT NAME = "time">
end_of _htm

if ($type_of formeq "nodify")

|{ori nt "<CPTICON VALUE = \"\">Don't Change Tinme\n";
foreach $time_value (@i me_val ues)

i{f ($tinme_val ue ne "09: 00")

{
print "<CPTION VALLE =

\"$tine_val ue\ ">$TI ME{ $ti ne_val ue}\n";
}

el se
{
if ($type_of _formne "nodify")
{

print "<CPTI ON SELECTED VALWE =
\"$time_val ue\">$TI ME{ $ti nme_val ue}\ n";
}

}
}

print "</ SELECT></ TD></ TR>\ n";

print "<TR>\ n<TH>Mont h</ TH>\ n";
print "<TD>\n";

&sel ect _a_nont h;

print "</ TD>\n";

312

Chapter 13: The Groupware Calender

print "</ TR>";

print "<TR ALI GN=LEFT>\ n";

print "<TH>Day</ TH>\ n";

print "<TD><SELECT NAME=\"day\">\n";
for ($i =1; $ < 32; $i++)

{
if ($i eq "$formdata{' day'}")
{
print "<CPTION SELECTED VALLE = \"$i\">%i\n";
}
el se
{
print "<CPTION VALLE = \"$i\">$i\n";
}
}
print <<" end_of _htm";
</ SELECT></ TD>
</ TR>
<TR ALI G\=LEFT>
<TH>Body</ TH>
<TD><TEXTAREA WRAP
aas

“virtual " NAME = “body" RO = "8"
" 40" ></ TEXTAREA></ TD>

</ TR>

</ TABLE>
end_of _htm
}

The Header Subroutine

The header subroutine is used by the main script to generate the HTML
header common to every script-generated HTML page.

sub header

{
local ($title) = @;
if ($titleeq"")

{
$title = "Selena Sol's @ oupware Cal endar Deno”;

}
print <<" end_of _htm";
<HTM_L><HEAD><TI TLE>$t i t | e</ Tl TLE></ HEAD>
<BODY>

<FCRM METHOD = "post" ACTION = "$this_script_url">

313

Chapter 13: The Groupware Calender

<INPUT TYPE = "hi dden" NAME = "session_file"
VALLE = "$session_file">

<INPUT TYPE = "hi dden" NAME = "cal endar”
VALUE = "$formdat a{' cal endar' }">

end_of _htm

}

314

