
265

C HA PT E R 1 3

The Groupware Calendar

OVERVIEW

Many offices have a calendar tacked to the wall in a central location.
Employees add items such as scheduled vacations, reservations of confer-
ence rooms, or notices about meeting, conferences, or seminars. By
using a shared calendar, employees can more efficiently coordinate their
work with that of others in the organization. The groupware calendar
script provides a Web interface to a similar shared calendar. Every user
can read what other people have added and, if the script is configured to
do it, can modify the other entries. Calendar entries are stored in an
ASCII database file.

The calendar has two primary views: the month view and the day
view. In the month view, users can see calendar months for any year with-
in a range specified at installation. Each day in the month displays the
subjects of events scheduled for that day. In the day view, the events for a
given day can be viewed in greater detail. Users can easily change the dis-
played month or year depending on their needs.



Varying levels of security are configurable. For example, the calendar
can be made to be viewable by anyone or by authenticated users only.
Items within the calendar database can be made to be modifiable or
deletable only by the person who posts them or by everyone.

Installation and Usage

The application should be installed into the default directory, Calendar.
Figure 13.1 outlines the expanded directory structure and the permis-
sions of files and subdirectories.

Figure 13.1 Directory layout for calendar.

This script should be placed in a directory that has permissions set to
allow the Web server to read and execute and should expand to include

calender.counter (read, write)

calender.events (read, write)

calender.users  (read, write)

Personal (read, write, execute)

Calender_session_files Subdirectory (read, write, execute)

Library Subdirectory (read, write)

Calender Directory (read, execute)

calender.setup (read)

calender.cgi (read, execute)

Databases Subdirectory (read, write, execute)

cgi-lib.sol (read)

Authentication Libraries (read)

date.pl (read)

cgi-lib.pl (read)

mail-lib.pl (read)

Chapter 13: The Groupware Calender

266



three directories (Calendar_session_files, Library, and Databases) and
two files (calendar.cgi and calendar.setup).

calendar.cgi is the application that provides most of the calendar pro-
cessing. This file should be readable and executable by the Web server
and will be discussed in greater detail in the design discussion.

calendar.setup is the file used to set the options and variables that
pertain to your local setup. The file must be readable by the Web server
and will be discussed in greater detail in the “Server-Specific Variables
and Options” section.

Calendar_session_files is the subdirectory used by the authentication
libraries to store session files, as discussed in Chapter 9. Initially the
directory will be empty, but if it is set to be readable, writable and exe-
cutable relative to the Web server, it will continually fill up and be
pruned as a part of daily usage.

Library is a subdirectory containing the supporting CGI libraries,
which are discussed in Part Two. The subdirectory should be readable
and executable by the Web server and should contain the following
libraries, which should be readable by the Web server: auth-extra-html.pl,
auth-extra-lib.pl, auth-lib-fail-html.pl, auth-lib.pl, auth-server-lib.pl, auth-
fail_html.pl, cgi-lib.pl, cgi-lib.sol, date.pl, and mail-lib.pl.

Databases is a subdirectory containing the counter, events, and user
files as well as any other calendar database files for alternative calendars.
Because calendar.cgi must be able to write to this directory, its permis-
sions should be set to be readable, writable, and executable.

calendar.counter is a text file used to keep track of unique ID num-
bers that have been assigned to each event in the calendar database.
Initially, this file should contain the number 1 on the first line and noth-
ing else. As time goes by, calendar.cgi will increment this number for every
new entry. The file must be readable and writable by the Web server.

calendar.events is the datafile used to store all the entered events.
The format is exactly the same as for the databases we have discussed in
previous chapters, including the protocol for comment lines and the use
of pipe (|) as a field delimiter. If you have jumped right to this chapter
and do not understand the database format, read the section on the
datafile in Chapter 11.

Chapter 13: The Groupware Calender

267



The default fields for the events file are as follows: the day, month,
year, username, first name, last name, E-mail address, subject, event time,
event description, and ID number. The file must be readable and
writable by the Web server.

calendar.users is a file containing the list of users who are allowed to
modify the events database. This user file is formatted exactly the same as
the default user file discussed in Chapter 9. This file should be readable
and writable by the Web server and should initially be empty.

Personal is a sample subdirectory used to describe how to create sepa-
rate calendar databases to be displayed by the same calendar.cgi script.
The directory contains three files: calendar.counter, calendar.events, and
calendar.users. These files define all the specific formats of each separate
calendar.

Server-Specific Setup and Options

calendar.setup is the setup file used by calendar.cgi to define server-spe-
cific variables, configure authentication, and configure the events data-
base. Defined variables are as follows:

$this_script_url is the location of calendar.cgi. Because we refer to it
from here and because, theoretically, this file will be in the same directory,
you need only state the name of the script. If that is the case and if you
don’t change the name of the file, don’t bother changing this variable.

$the_current_year is pretty obvious. Set this to the current year.

$greatest_year is the highest-numbered year for which you want peo-
ple to be able to submit calendar events on the Add Item form.

$database_file is the location of the file that contains the calendar
database. Because this file can be defined by the user, we tag onto this
variable the value of $calendar_type, which is given to us by the main
script, calendar.cgi. In short, $calendar_type is a value set by the initial
link via urlencoding 

http://www.foobar.com/cgi-
bin/Calendar/calendar.cgi?calendar=Personal

Chapter 13: The Groupware Calender

268



Thus, the $calendar_type should be the directory name of each separate
calendar.

We don’t recommend that you change this variable. The only reason
to change it is if you don’t like our file-naming conventions or if you
are working with DOS and can have only 8.3 filenames.

$counter_file is the path of the file that you are using to keep track of
unique ID numbers. To make deletions and modifications, we must have
a unique ID number so that the script can determine which database
item to delete. These ID numbers should always be the last field in any
database row. Again, because we need to isolate each of the calendars, we
will reference the counter file including the $calendar_type variable.

$temp_file is a file that the script uses to temporarily store various
data at various times. The file will be generated and deleted by the script.

$lock_file is a file that the script uses to make sure that only one per-
son can modify the database at any given time.

Authentication variables are explained in Chapter 9.

@day_names is an array containing the names of the weekdays. A word
of caution for all the arrays: the most common source of configuration
errors is to forget to put a comma here or a quotation mark there, or
even to forget to add one of the fields. So be very careful here; every-
thing must be perfect!

@month_names is—yup, you got it—a list of month names.

%MONTH_ARRAY is an associative array that pairs month names with their
numbers.

%TIME is an associative array that pairs time names with military time
values.

@time_values is an ordered list of military time values.

%FIELD_ARRAY is an associative array that pairs database field names
with their variable names.

@field_names is the list of database fields.

Chapter 13: The Groupware Calender

269



@field_values is the list of the variable names associated with the
database fields in @field_names. By the way, the reason that we don’t use
key and value commands to define the arrays relative to all the associative
arrays is that we want to predefine an order for them. If we used keys and
values, we would lose our order in the hash table entry to the associative
array.

$field_num_time is the element number in the array of the event_time
field in the database. We need this value to sort the database by time so
that when you click on a day view, the day events come up in order. When
setting this variable, remember that arrays count from zero and not from 1.

As an example, the complete calendar.setup file is listed next:

$this_script_url = "calendar.cgi";
$the_current_year = "1996";
$greatest_year = "2011";
$database_file = "./Databases/$calendar_type/calendar.events";
$counter_file = "./Databases/$calendar_type/calendar.counter";
$temp_file =
"./Calendar_session_files/$calendar_type/calendar_temp.file";
$lock_file =
"./Calendar_session_files/$calendar_type/calendar_lock.file";
$auth_lib = "$lib";
$auth_server =  "off";
$auth_cgi =  "on";
$auth_user_file =  "./Databases/$calendar_type/calendar.users";
$auth_alt_user_file =  "";
$auth_default_group =  "user";
$auth_add_register =  "on";
$auth_email_register =  "off";
$auth_admin_from_address =  "selena\@foobar.com";
$auth_admin_email_address =  "selena\@foobar.com";
$auth_session_length = 2;
$auth_session_dir = "./Calendar_session_files";
$auth_register_message = "Thanks, you may now logon with

your new username and password.";
$auth_allow_register =  "on";
$auth_allow_search =  "on";
$auth_generate_password =  "off";
$auth_check_duplicates =  "on";
$auth_password_message = "Thanks for applying to our

site, your password is";
@auth_extra_fields = ("auth_first_name",

Chapter 13: The Groupware Calender

270



"auth_last_name",
"auth_email");

@auth_extra_desc = ("First Name",
"Last Name",
"Email");

@day_names = ("Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday",
"Saturday");

@month_names = ("January", "February", "March", "April",
"May", "June", "July", "August",
"September", "October", "November",
"December");

%MONTH_ARRAY = ('January', '1',       'February', '2',
'March', '3',         'April', '4',
'May', '5',           'June', '6',
'July', '7',          'August', '8',
'September', '9',     'October', '10',
'November', '11',     'December', '12');

%TIME = ('01:00', '1 AM', '02:00', '2 AM', '03:00',
'3 AM', '04:00', '4 AM', '05:00', '5 AM',
'06:00', '6 AM', '07:00', '7 AM', '08:00',
'8 AM', '09:00', '9 AM', '10:00', '10 AM',
'11:00', '11 AM', '12:00', '12 Noon', '13:00',
'1 PM', '14:00', '2 PM', '15:00', '3 PM',
'16:00', '4 PM', '17:00', '5 PM', '18:00',
'6 PM', '19:00', '7 PM', '20:00', '8 PM',
'21:00', '9 PM', '22:00', '10 PM', '23:00',
'11 PM', '24:00', '12 Midnight');

@time_values = ("01:00", "02:00", "03:00", "04:00",
"05:00", "06:00", "07:00", "08:00",
"09:00", "10:00", "11:00", "12:00",
"13:00", "14:00", "15:00", "16:00",
"17:00", "18:00", "19:00", "20:00",
"21:00", "22:00", "23:00", "24:00");

%FIELD_ARRAY = ('Day', 'day',
'Month', 'month',
'Year', 'year',
'Username', 'username',
'First Name', 'first_name',
'Last Name', 'last_name',
'Email Address', 'email',
'Subject', 'subject',
'Event Time', 'time',
'Body', 'body',
'Database Id Number',
'databse_id_number');

@field_names = ("Day", "Month", "Year", "Username",

Chapter 13: The Groupware Calender

271



"First Name", "Last Name",
"Email Address", "Subject",
"Event Time", "Body",
"Database Id Number");

@field_values = ("day", "month", "year", "username",
"first_name", "last_name", "email",
"subject", "time", "body",
"databse_id_number");

$field_num_time = "8";

Running the Script

Once you have configured the setup file to the specifics of your server
and calendar datafile, it is time to try out your installation. To reference
the script, use the following URL format.

<A HREF="http://www.foobar.com/cgi-
bin/Calendar/calendar.cgi">Calendar</A>

When clients click on this link, they should see the front page of your cal-
endar with the default configurations. To reference separate calendar
databases, the link to this script must have ?calendar=Some_subdirectory
added at the end of the URL. For example,

http://www.foobar.com/cgi-
bin/Calendar/calendar.cgi?calendar=Personal

DESIGN DISCUSSION

Figure 13.2 outlines the logic of the script as it manages the needs of the
client and the demands of the server.

The script begins by starting the Perl interpreter and printing the
HTTP header.

#!/usr/local/bin/perl
print "Content-type: text/html\n\n";

Chapter 13: The Groupware Calender

272



Figure 13.2 The script logic.

Loading the Supporting Libraries

Next, the script loads the necessary files using the subroutine CgiRequire
at the end of this script. If there is a problem loading files, this subrou-
tine returns a message that’s valuable for debugging. $lib is the location
of the Library directory, where these files are to be stored; because it is
hard-coded in the main script, you must be careful to change it here if
you move the library elsewhere. Keep $lib equal to ./Library if you do
not have a Library directory and are going to use the default directory
included on the accompanying disk.

$lib = "./Library";
&CgiRequire("$lib/cgi-lib.pl", "$lib/cgi-lib.sol",

"$lib/auth-lib.pl", "$lib/date.pl");

Read/Parse Incoming Form Data

Output Month View

Require Supporting Files

Require Setup File

Change Month/Year
Output Day View

Modify Item Delete Item Add Item

Chapter 13: The Groupware Calender

273



Reading and Parsing Incoming Form Data

cgi-lib.pl is used to parse the incoming form data. By passing it (*form_data),
the subroutine returns an associative array that we reference as
$form_data{'key'} instead of $in{'$key'}. In the end, the script will reference
all the incoming form data as $form_data{'variablename'}.

&ReadParse(*form_data);

Loading the Setup File

Once the incoming form data has been processed, the script determines
which calendar database to use. If the calendar administrator has set up
more than one calendar, each calendar database will be in a subdirectory,
such as the example Personal Database that is included in the accompanying
disk. To reference these separate databases, the link to this script must have
?calendar=Somesubdirectory added at the end of the URL. For example:

http://www.foobar.com/cgi-
bin/Calendar/calendar.cgi?calendar=Personal

If the client does not submit a new database to use, the script will simply
assign the default database and calendar. The $calendar_type variable will
be used within the calendar.setup file, as addressed earlier.

if ($form_data{'calendar'} ne "")
{
$calendar_type = "./$form_data{'calendar'}";
}

else
{
$calendar_type = "./";
}

Then the script defines all the calendar-specific variables by using the
setup file, which you should have customized for your site.

&require("calendar.setup");

Chapter 13: The Groupware Calender

274



Defining Intrascreen Variables

Next, we make sure that the script “remembers” the $session_file so that it
can continually check for authentication and keep track of the current
client. However, if the client has already logged on, the script does not
need to revalidate the client, because it will be getting the $session_file as
form data (the same hidden field we are about to define). Thus, the script
renames $form_data{'session_file'} to $session_file so that in both cases
(the client’s first time at this point or subsequent script access by a continu-
ing client) it will have the session_id in the same variable name form.

if ($form_data{'session_file'} ne "")
{
$session_file = $form_data{'session_file'};
}

The script also renames some other variables using the same principle.
In doing so, the script uses a couple of routines in date.pl, as discussed in
Chapter 6, to manipulate date information so that it can use the date
information in a standardized way.

if ($form_data{'year'} ne "")
{
$current_year = "$form_data{'year'}";
}

else
{
$current_year = "$the_current_year";
}

if ($form_data{'month'} eq "")
{
@mymonth = &make_month_array(&today);
$current_month_name = &monthname($currentmonth);
}

else
{
@mymonth =

&make_month_array(&jday($form_data{'month'},1,$current_year));
$current_month_name = &monthname($form_data{'month'});
}

Chapter 13: The Groupware Calender

275



Printing the Calendar for the Current Month

The script prints the dynamically generated calendar in two cases. First,
the calendar is printed if the client has just logged on and is asking for the
first page ($form_data{'session_file'} ne ""). Second, the calendar is
printed if the client has already been moving through various pages and
has asked to view the calendar again ($form_data{'change_ month_year'}
ne ""). The || means “or.” If either case is true, the script may proceed.

if ($form_data{'change_month_year'} ne "" ||
$ENV{'REQUEST_METHOD'} eq "GET" &&
$form_data{'day'} eq "")
{

Displaying the Calendar Header

The script begins outputting the calendar by first printing the HTML cal-
endar header.

&header ("Selena Sol's Groupware Calendar Demo:
$current_month_name - $current_year");
print <<"    end_of_html";
<CENTER>
<H2>$current_month_name - $current_year</H2>
</CENTER>
<TABLE BORDER = "2" CELLPADDING = "4" CELLSPACING = "4">
<TR>
end_of_html

You can modify everything between the print <<" end_of_html";
and the end_of_html, but be careful of illegal characters. For exam-
ple, @ must be preceded by a backslash (selena\@foobar.com).

The script then prints the table header (Weekdays). Essentially, for every
day (foreach $day) in our list of days (@day_names), the script prints the
day as a table header.

foreach $day (@day_names)
{

Chapter 13: The Groupware Calender

276



print "<TH>$day</TH>\n";
}

print "</TR>\n<TR>\n";

Next, the script creates the variable $count_till_last_day, which it uses to
make sure that it does not add too many <TR>s. Also, the script clears out
a new variable, $weekday, which it uses to keep track of the two-dimen-
sional aspect of the calendar: the script breaks the calendar rows after
every seventh cell to represent a week. We will talk more about this later.

$count_till_last_day = "0";
$weekday = 0;

Displaying Calendar Days as Table Cells

For every day in the mymonth array, the script creates a cell for the calen-
dar. The array @mymonth, if you recall, is an array returned from the sub-
routine make_month_array.

foreach $day_number (@mymonth)
{

The script begins by incrementing the two counter variables:
$count_till_last_day and $weekday.

$count_till_last_day++;
$weekday++;

The script must also make sure that it adds a break for every week to
make the calendar two-dimensional. Thus, when it has gone through
sets of seven days in this foreach loop, it resets $weekday to zero. In the
following code, the script uses these values to determine where it should
place the </TR><TR>, making a new calendar row. When $weekday is
greater than 6, the script knows that it needs a </TR><TR>, so by setting
the $weekday flag to zero, we notify the script a few lines later to insert
the row break.

$weekday = 0 if ($weekday > 6);

Chapter 13: The Groupware Calender

277



Next, the script prints a table cell for each day. Because we want to make
each of the numbers in each of the cells clickable so that someone can
click on the number to see a day view, the script must manage a great
deal of information here.

First, the script builds a variable called $variable_list, which is used
to create a long URL appendix to transfer information using urlencod-
ing. As we will discuss more specifically later, the routine that generates
the day views needs to have the day, year, and month values if it is to
bring up a day view. It must also have the $session_file value (as all the
routines in this script must), the name of the calendar database, and the
special tag view_day=on. So the script gathers all that information and
appends it to the $variable_list variable.

$variable_list = "";
$variable_list = "day=$day_number&year=$currentyear";
$variable_list .= "&month=$currentmonth";
$variable_list .= "&session_file=$session_file";
$variable_list .= "&calendar=$form_data{'calendar'}";
$variable_list .= "&view_day=on";

Then the script creates the calendar cell. Notice that the number in each
cell is made clickable by using urlencoding to tag the URL with all the
variables we want passed.

print "<TD VALIGN = \"top\" WIDTH = \"150\">\n";
print "<A 
HREF=\"$this_script_url?$variable_list\">$day_number</A
>\n";

Adding Subject Listings to Calendar Cells

The cell is not yet complete. The script must also grab from the calendar
database the subject listings for all the entries on that day. In doing so,
the script makes sure that, if it cannot open the database file, it sends a
useful message to us for debugging. It uses the open_error subroutine in
cgi-lib.sol, passing the routine the location of the database file.

Chapter 13: The Groupware Calender

278



open (DATABASE, "$database_file") ||
&open_error($database_file);

If it successfully opens the database file, the script goes through each
line, splitting the fields into their associated variables.

while (<DATABASE>)
{
($day, $month, $year, $username, $first_name,
$last_name, $email, $subject, $time, $body,
$database_id_number) = split (/\|/,$_);

For every row searched, the script determines whether the day, month,
and year of each item on that row are equal to the day, month, and year
of the cell it is currently building.

if ($day eq "$day_number" && $month eq "$currentmonth"
&& $year eq "$currentyear")

{

If it was able to answer true to all the preceding conditions, the script
knows that it has found a match and prints the subject in that cell.

print "<BR><FONT SIZE = \"1\">$subject</FONT>\n";
} # End of if ($day eq "$day_number" && $month eq ...

} # End of while (<DATABASE>)

Once the script has checked all the lines in the database, it closes that
cell and moves to the next cell.

print "</TD>\n";

If, however, the script reached the end of a week row, it must begin a new
table row for the next week. If $weekday is equal to zero, then the script
knows that it is time to begin a new row. Otherwise, it continues with the row.

if ($weekday == 0)
{
print "</TR>\n";

Chapter 13: The Groupware Calender

279



By the way, here we use == instead of =. If we used =, Perl would
interpret the part inside the if () to be assigning the value of zero
to $weekday, and it would evaluate the whole process as true. That
would undercut the whole point of counting with $weekday.

Before the script blindly prints another table row, it makes sure that it has
not reached the end of the month. If $count_till_last_day equals @mymonth,
it knows that there are no more days left and it should not begin a new
row. Notice that when we reference @mymonth without quotation marks, we
receive the numerical value of the number of elements in the array.

unless ($count_till_last_day == @mymonth)
{
print "<TR>";
} # End of unless ($count_till_last_day == @mymonth)
} # End of if ($weekday == 0)
} # End of foreach $day_number (@mymonth)

Displaying Footer Information for the Month View

Once the script has finished making all the cells for the calendar, it
prints the HTML footer.

print <<"    end_of_html";
</TABLE>
</CENTER>
<BLOCKQUOTE>
For day-at-a-glance calendar, click on the day number on the
calendar above.
<BR>
Or, to see another 1996 month, choose one
end_of_html

To let the user select a different month to view, the script creates a select
box using the subroutine select_a_month at the end of this script.

&select_a_month;
print "<P>Or, to see another year, select one\n";

Chapter 13: The Groupware Calender

280



Likewise, it creates a select box that allows the client to choose a new year
to view using select_a_year at the end of this script.

&select_a_year;

Then the script outputs the usual footer.

print <<"    end_of_html";
<P>
* Note: This calendar is best viewed by opening your
browser window to its maximum size. And, you can only submit
a month if the year field is cleared!<P>
</BLOCKQUOTE>
<CENTER>
<INPUT TYPE = "submit" NAME = "change_month_year"

VALUE = "Change Month/Year">
<INPUT TYPE = "reset" VALUE = "Clear this form">
<INPUT TYPE = "submit" NAME = "add_item_form"

VALUE = "Add Item">
</FORM>
</CENTER>
</BODY>
</HTML>
end_of_html
exit;
} # End of if ($form_data{'change_month_year'} ne "" ||...

On the Web, the front page looks like Figure 13.3.

Displaying a Day View

In the preceding routine, the script made every number in every cell of
the calendar clickable so that the client could view the detailed descrip-
tions of the events scheduled for that day. In the urlencoded string it
built, the script included a tag view_day = on. Here is where that tag
comes in handy. The following if test checks to see whether the person
has clicked on a number; if the person has, the test will evaluate to true.
If the test evaluates to true, the script prints the page header.

Chapter 13: The Groupware Calender

281



Figure 13.3 The view month interface.

if ($form_data{'view_day'} eq "on")
{
&header ("$current_month_name $form_data{'day'},

$current_year");
print <<"    end_of_html";
<CENTER>
<H2>$current_month_name $form_data{'day'},

$current_year</H2>
</CENTER>
end_of_html

Next, the script opens the database again and looks for database rows
that match the requested day, month, and year.

Chapter 13: The Groupware Calender

282



open (DAYFILE, "$database_file") ||
&open_error($database_file);
while (<DAYFILE>)

{

Just as it did in the routine for generating subject lines for day cells, the
script pays attention only to database rows that match the client-defined
day, month, and year.

($day, $month, $year, $username, $first_name,
$last_name, $email, $subject, $time, $body,
$database_id_number) = split (/\|/,$_);
if ($day eq "$form_data{'day'}" &&

$month eq "$form_data{'month'}" &&
$year eq "$current_year")

{

Next, the script sets the $item_found flag so that it can keep track of
whether it has found an item in the database.

$item_found = "yes";

The script then prints an <HR>-delimited, detailed list of events of the day,
followed by a standard HTML footer.

print <<"        end_of_html";
<B>Time:</B> $TIME{$time}<BR>
<B>Subject:</B> $subject<BR>
<B>Poster:</B>
<A HREF = "mailto:$email">$first_name

$last_name</A><BR>
<B>Body:</B><BLOCKQUOTE>$body</BLOCKQUOTE>
<P><CENTER><HR WIDTH = "50%"></CENTER><P>
end_of_html
} # End of if ($day eq "$form_data{'day'}" &&........)

} # End of while (<DAYFILE>)

If the script was not able to find any items in the database, it must let the
client know. So if $item_found was never set to yes, the script sends the
client a note of explanation.

Chapter 13: The Groupware Calender

283



if ($item_found ne "yes")
{
print "<BLOCKQUOTE>It appears that there are no

entries posted for this day.  Would you like to
add one?</BLOCKQUOTE>";

}
print <<"    end_of_html";
<CENTER>
<INPUT TYPE = "hidden" NAME = "day" VALUE = "$form_data{'day'}">
<INPUT TYPE = "hidden" NAME = "month"

VALUE = "$form_data{'month'}">
<INPUT TYPE = "hidden" NAME = "year" VALUE = "$current_year">
<INPUT TYPE = "submit" NAME = "modify_item_form"

VALUE = "Modify Item">
<INPUT TYPE = "submit" NAME = "delete_item_form"

VALUE = "Delete Item">
<INPUT TYPE = "submit" NAME = "add_item_form"

VALUE = "Add Item">
<INPUT TYPE = "submit" NAME = "change_month_year"

VALUE = "View Month">
</FORM></CENTER></BODY></HTML>
end_of_html
exit;
}

Figure 13.4 shows the day view interface on the Web.

Authenticating the User

Allowing clients to view the calendar is one thing. Letting them modify
the calendar database is another. The following routine checks to see
whether the client is authorized to do anything in addition to viewing.
The script passes GetSessionInfo, which is contained in auth-lib.pl, three
parameters: the $session_file value (which will be nothing if one has not
yet been set), the name of this script (so that it can provide links), and
the associative array of form data we got from cgi-lib.pl.

($session_file, $session_username, $session_group,
$session_first_name, $session_last_name, 
$session_email) =
&GetSessionInfo($session_file, $this_script_url, 
*form_data);

Chapter 13: The Groupware Calender

284



Figure 13.4 The day view.

Displaying the Add Event Form

Once the client has been authenticated, the script determines the
desired action. This first routine checks to see whether the client wants
to add an item. If so, the script presents a form that the client uses to
submit information for each of the database fields.

if ($form_data{'add_item_form'} ne "")
{
&header ("Add an Item to Selena's Groupware Calendar Demo");

The subroutine submission_form at the end of this script is used to generate a
form with input fields for every database item that can be manipulated by the
client.

Chapter 13: The Groupware Calender

285



&submission_form;

The script then prints a standard HTML footer and quits.

print <<"    end_of_html";
<CENTER><P>
<INPUT TYPE = "submit" NAME = "add_item" VALUE = "Add 
Item">
<INPUT TYPE = "reset" VALUE = "Clear This Form">
<INPUT TYPE = "submit" NAME = "change_month_year" VALUE 
= "View Month">
</CENTER></BODY></HTML>
end_of_html
exit;
}

Figure 13.5 shows what the add form looks like on the Web.

Figure 13.5 The calendar add form.

Chapter 13: The Groupware Calender

286



Adding an Event to the Database

Once the client submits a new event, the script must be prepared to add
the item to the calendar database. The following routine does just that.

if ($form_data{'add_item'} ne "")
{

The routine begins by printing the page header.

&header ("Adding an Item to the Calendar Database");

Next, the script makes sure that the client has filled out all the necessary
fields in the submission form. The script gets a list of the variable names
(keys) associated with the associative array %form_data given to us by cgi-lib.pl.

@form_data = keys (%form_data);

For every element in the list array @form_data, the script checks to see
whether the associated value in %form_data has content. If it doesn’t, the
script sends an error message and quits.

foreach $variable_name (@form_data)
{
if ($form_data{$variable_name} eq "" &&

$variable_name ne "calendar")
{
print <<"        end_of_html";
<BLOCKQUOTE><FONT SIZE = "+3">
I'm very sorry but you must enter something in 
the <B>$variable_name</B> input box.  Please press 
the back button and try again.
</BLOCKQUOTE></BODY></HTML>
end_of_html
exit;
}

}

On the other hand, if the client entered data into all the fields, the script
adds the new entry. First, it uses the subroutine GetFileLock in cgi-lib.sol
to create a lock file to protect database integrity during modification.

Chapter 13: The Groupware Calender

287



The script passes as the sole parameter the location of the lock file used
by this program. If the script makes it past the lock file routine, it means
that the script is the sole owner of the database file and can safely make
changes.

&GetFileLock ("$lock_file");

Before it can add a new entry, though, the script must acquire a unique
number from the counter file by using the subroutine counter in cgi-
lib.sol. counter receives as its one parameter the location of the counter
file used by this program.

&counter($counter_file);

The unique counter number is essential, because every row must be
uniquely identifiable for modifications and deletions. The numbers
don’t need to be in any order, and there can be gaping holes between
numbers (as when items are deleted), but they must be unique.

Next, the script writes the contents of the new entry to the database file,
appending (>>) the new data to the end of the existing list of items.

open (DATABASE, ">>$database_file") || &open_error($database_file);

Then it formats the incoming form data so that the new event will be
confined to one database line. To do this, the script changes (=~ s/) all
occurrences (/g) of newlines (\n) into <BR>, and all occurrences of two
hard returns (\r\r) into <P>.

foreach $value (@field_values)
{
$form_data{$value} =~ s/\n/<BR>/g;
$form_data{$value} =~ s/\r\r/<P>/g;
$form_data{$value} =~ s/\|/:/g;
}

Finally, the script simplifies some of the variables and generates the new
database row.

Chapter 13: The Groupware Calender

288



if ($session_first_name eq "")
{
$session_first_name =  "$form_data{'first_name'}";
$session_last_name =  "$form_data{'last_name'}";
$session_email = "$form_data{'email'}";
}

$subject = "$form_data{'subject'}";
$event_time = "$form_data{'time'}";
$month = "$form_data{'month'}";
$day = "$form_data{'day'}";
$year = "$form_data{'year'}";
$body = "$form_data{'body'}";
$new_row = "";
$new_row .= "$day\|$month\|$year\|$session_username\|";
$new_row .=
"$session_first_name\|$session_last_name\|$session_email\|";
$new_row .= "$subject\|$event_time\|$body\|$item_number";

The script now safely adds the new database row to the database file and
deletes the lock file so that someone else may modify the database file.

print DATABASE "$new_row\n";
close (DATABASE);
&ReleaseFileLock ("$lock_file");

Don’t forget the newline at the end of the database row so that the
next item entered will be on its own line.

Finally, the script prints the standard page footer.

print <<"    end_of_html";
<H2><CENTER>Your item has been added, thanks.</H2>
<INPUT TYPE = "hidden" NAME = "day" VALUE = "$form_data{'day'}">
<INPUT TYPE = "hidden" NAME = "month" VALUE = "$form_data{'month'}">
<INPUT TYPE = "hidden" NAME = "year" VALUE = "$current_year">
<INPUT TYPE = "submit" NAME = "change_month_year"

VALUE = "Return to the Calendar">
</BODY></HTML>
end_of_html

Figure 13.6 shows the response on the Web.

Chapter 13: The Groupware Calender

289



Figure 13.6 Web response.

Sorting the Calendar Database by Time

We are not finished with the add quite yet. The script must also sort the
entries in the database file so that when clients choose day views, their
entries come out ordered by time. Again, the script creates the lock file so
that no one else can modify the database file while it is being modified.

&GetFileLock ("$lock_file");
open (DATABASE, "$database_file") || &open_error($database_file);

The script adds every row in the database file to an array called @data-
base_fields.

while (<DATABASE>)
{
@database_fields = split (/\|/, $_);

Next, it creates a variable called $comment_row, which is used to hold com-
ment lines in the database file. We do not want them sorted along with
the rest of the items.

if ($_ =~ /^COMMENT:/)
{
$comment_row .= $_;
}

Chapter 13: The Groupware Calender

290



If the database row is not a comment row, the script finds the field that has
the time of the event and appends it to the front of the database row. (So it
occurs twice: once at the beginning of the line and again in the middle
somewhere.) The script also adds (pushes) the whole string ($sortable_row)
into a growing array called @database_rows. (We’ll explain why in the next
paragraph.)

else
{
$sortable_row = "$database_fields[$field_num_time]~~";
$sortable_row .= $_;
push (@database_rows, $sortable_row);
}

}

When all the “modified” rows have been added to the array
@database_rows, the script sorts the array. This is why we appended the
time to the beginning of each of the rows: the sort routine sorts all the
database items by event time.

@sorted_temp_database = sort (@database_rows);

There is no need to sort on the date, because database rows are
already displayed by date. We need only sort the items by time with-
in a day.

Now the script goes through @sorted_temp_database and takes out the
extra event_time string at the beginning of each database row, and we’re
back where we started except that the rows are sorted. The script splits
the string at ~~ and then pushes the part of the string that corresponds to
the original database row back into the array @final_sorted_database.

foreach $database_row (@sorted_temp_database)
{
($extra_event_time, $true_database_row) = split (/~~/,
$database_row);
push (@final_sorted_database, $true_database_row);
}

close (DATABASE);

Chapter 13: The Groupware Calender

291



Next, the script modifies the original database file so that it represents the
sorted order. To do this, it creates a temporary file to which it reprints all
the comment rows stored in the variable $comment_row.

open (TEMPFILE, ">$temp_file") || &open_error($temp_file);
print TEMPFILE "$comment_row";

Then, for each of the database rows stored in @final_sorted_database, the
script prints to the temporary file.

foreach $row (@final_sorted_database)
{
print TEMPFILE "$row";
}

close (TEMPFILE);

Finally, the script copies the temporary file over the original database file
using the rename command so that the resulting file represents the sort.
Then the lock file is deleted.

rename ($temp_file, $database_file);
&ReleaseFileLock ("$lock_file");
exit;
}

Displaying the Modification Form

Next, if asked to do so, the script prints the modify event form.

if ($form_data{'modify_item_form'} ne "")
{
&header ("Modify and Item");

First, it prints the basic header, including the hidden fields, which must
be transferred to the modification routines so that they will have all the
user information necessary to re-create database rows.

Because the modification routines will compare incoming form data
to database row information, this information must come in with the rest
of the form data.

Chapter 13: The Groupware Calender

292



print <<"    end_of_html";
<INPUT TYPE = "hidden" NAME = "username"

VALUE = "$session_username">
<INPUT TYPE = "hidden" NAME = "first_name"

VALUE = "$session_first_name">
<INPUT TYPE = "hidden" NAME = "last_name"

VALUE = "$session_last_name">
<INPUT TYPE = "hidden" NAME = "email"

VALUE = "$session_email">
<CENTER>
<H2>$current_month_name $form_data{'day'}, $current_year</H2>
</CENTER>
end_of_html

The script then begins a table that will display all the items posted by the
client on the day of interest. But, for the time being, instead of printing
the table immediately, it builds it in a variable called $table.

$table .= "<TABLE BORDER = \"1\" CELLSPACING = \"2\"
CELLPADDING = \"2\" WIDTH = \"1100\">\n";

$table .= "<TR>\n";
$table .= "<TH>Modify Item</TH>\n";

Similarly, the script adds the header row to $table.

foreach $name (@field_names)
{
$table .= "<TH>$name</TH>\n";
}

$table .= "</TR>\n";

Then the script opens the database and checks for items that correspond
to the user as well as the requested day, month, and year.

open (DAYFILE, "$database_file") ||
&open_error($database_file);

while (<DAYFILE>)
{
chop $_; # Make sure to take out the newline.

Next, it splits the database row as usual, but this time it also creates the
list array @database_values, which will be discussed soon.

Chapter 13: The Groupware Calender

293



($day, $month, $year, $username, $first_name,
$last_name, $email, $subject, $time, $body, $database_id_number) =
split (/\|/,$_);
@database_values = split (/\|/,$_);

The script is directed to pay attention only to items specific to user, day,
month, and year.

if ($day eq "$form_data{'day'}" &&
$month eq "$form_data{'month'}" &&
$year eq "$form_data{'year'}" &&
$session_username eq "$username")

{

The script also flags the fact that it found an item.

$item_found = "yes";

Then the script continues adding to $table by adding the table row cor-
responding to the database row that was matched. Also, it adds a radio
button so that the client can select the table row to modify.

$table .= "<TR>\n";
$table .= "<TD ALIGN = \"center\">";
$table .= "<INPUT TYPE = \"radio\" NAME =\"item_to_modify\"";
$table .= "VALUE=\"$database_id_number\"></TD>\n";
foreach $value (@database_values)

{
$table .= "<TD>$value</TD>\n";
}
$table .= "</TR>\n";

}
}
$table .= "</TR></TABLE><P><CENTER>\n";

If $item_found is still not equal to yes, it means that we did not match any
items and that the script should send the client a note of explanation.

if ($item_found ne "yes")
{
print <<"      end_of_html";

Chapter 13: The Groupware Calender

294



<BLOCKQUOTE>
I'm sorry, you have not posted any items for this day,
so there is nothing for me to modify.
</BLOCKQUOTE><CENTER>
<INPUT TYPE = "submit" NAME = "change_month_year"

VALUE = "View Month"></BODY></HTML>
end_of_html
exit;
}

If, however, $item_found equals yes, the script prints $table.

print "$table";

In the case of modification, the client also needs a form similar to the
add form so that he or she can make any desired modifications. We use
the submission_form subroutine at the end of this script, passing it the
parameter modify so that it will know to output that form.

&submission_form("modify");

Finally, the script prints a standard footer and quits.

print <<"    end_of_html";
<CENTER><P>
<BLOCKQUOTE><I>Note: Make sure to select an item to modify using the
radio buttons on the top table.  Then change any of the form inputs
you want changed, leaving the others as they are.  Feel free to cut
and paste from the top table to the bottom table if you only need to
change a small amount of
text</I></BLOCKQUOTE>
<INPUT TYPE = "submit" NAME = "modify_item"

VALUE = "Modify Selected Item">
<INPUT TYPE = "reset" VALUE = "Clear This Form">
</CENTER></FORM></BODY></HTML>
end_of_html
exit;
}

On the Web, the modify form looks like Figure 13.7.

Chapter 13: The Groupware Calender

295



Figure 13.7 Calendar modify form.

Displaying the Delete Event Form

Next, the script prints a form for item deletion if requested by the client.

if ($form_data{'delete_item_form'} ne "")
{
&header ("Delete an Item");
print "<CENTER>\n";
print "<H2>$current_month_name $form_data{'day'},

$current_year</H2>\n";
print "</CENTER>\n";

Chapter 13: The Groupware Calender

296



Just as it did for the modify form, the script creates the $table variable and
prints the delete form (or the error message if no items were found). First,
the script outputs the header.

$table = "";
$table .= "<TABLE BORDER = \"1\" CELLSPACING = \"2\"

CELLPADDING = \"2\" WIDTH = \"1100\">";
$table .= "\n<TR>\n";
$table .= "<TH>Delete Item</TH>";
foreach $name (@field_names)
{
$table .= "<TH>$name</TH>\n";
}

$table .= "</TR>\n";

Then it creates the possible delete rows.

open (DAYFILE, "$database_file") || &open_error($database_file);
while (<DAYFILE>)
{
chop $_;
($day, $month, $year, $username, $first_name,
$last_name, $email, $subject, $time, $body,
$database_id_number) = split (/\|/,$_);

@database_values = split (/\|/,$_);

if ($day eq "$form_data{'day'}" &&
$month eq "$form_data{'month'}" &&
$year eq "$form_data{'year'}" &&
$session_username eq "$username")

{
$item_found = "yes";
$table .= "<TR>\n";
$table .= "<TD ALIGN = \"center\">";
$table .= "<INPUT TYPE = \"radio\"

NAME =\"item_to_delete\"";
$table .= "VALUE=\"$database_id_number\"></TD>\n";

foreach $value (@database_values)
{

Chapter 13: The Groupware Calender

297



$table .= "<TD>$value</TD>\n";
}
$table .= "</TR>\n";

}
}

Next, if necessary, the script prints an error message.

if ($item_found ne "yes")
{
print <<"      end_of_html";
<BLOCKQUOTE>
I'm sorry, you have not posted any items for this day,
so there is nothing for me to delete.
</BLOCKQUOTE><CENTER>
<INPUT TYPE = "submit" NAME = "change_month_year"

VALUE = "View Month"></BODY></HTML>
end_of_html
exit;
}

print <<"    end_of_html";
$table
</TR></TABLE><CENTER><P>
<INPUT TYPE = "hidden" NAME = "day"

VALUE = "$form_data{'day'}">
<INPUT TYPE = "hidden" NAME = "month"

VALUE = "$form_data{'month'}">
<INPUT TYPE = "hidden" NAME = "year" VALUE = "$current_year">
<INPUT TYPE = "submit" NAME = "delete_item"

VALUE = "Delete Selected Item">
<INPUT TYPE = "submit" NAME = "change_month_year"

VALUE = "Return to the Calendar">
</CENTER></FORM></BODY></HTML>
end_of_html
exit;
}

On the Web, the delete form looks like Figure 13.8.

Chapter 13: The Groupware Calender

298



Figure 13.8 The calendar delete form.

Deleting an Event from the Database

If asked, the script deletes an item from the database.

if ($form_data{'delete_item'} ne "")
{

The script must be sure that the client actually chose an item to delete
with the radio buttons.

if ($form_data{'item_to_delete'} eq "")
{
&header ("Woopsy");
print <<"      end_of_html";
<CENTER><
H2>Delete an Item in the Database Error</H2>
</CENTER>
<BLOCKQUOTE>
I'm sorry, I was not able to modify the database
because none of the radio buttons on the table was

Chapter 13: The Groupware Calender

299



selected so I was not sure which item to delete.
Would you please make sure that you select an item
\"and\" fill in the new information. Just press the
back button.  Thanks.
</BLOCKQUOTE>
end_of_html
exit;
}

First, the script locks the database file as it did for the add item routines.

&GetFileLock ("$lock_file");

Then it creates a temporary file as before.

open (TEMP, ">$temp_file") || &open_error($temp_file);
close (TEMP);

If there is data in the database file, the script checks to see which item
matches the deletion.

open (DATA, "$database_file") || &open_error($database_file);
while (<DATA>)
{
@grepfields=split(/\|/,$_);

To do so, the script gets the unique database ID for each database row
and chops off the newline.

$database_id = pop (@grepfields);
chop $database_id;

If the unique database ID of the row is not equal to the database ID num-
ber submitted by the client, the script knows not to delete that row.
Instead, it prints it to the temporary file.

if ($database_id ne "$form_data{'item_to_delete'}")
{
open (TEMP, ">>$temp_file") ||

&open_error($temp_file);
print TEMP "$_";
close (TEMP);

Chapter 13: The Groupware Calender

300



}
} # End of while (<DATA>)

Once it has gone through all the items in the database, the script copies
the temporary file over the database file; the deletion will have been
made, because the row that matched the database ID number will not
have been printed to the temporary file. Then the script closes the data-
base file and deletes the lock file so that others can modify the database.

close (DATA);
rename ($temp_file, $database_file);
&ReleaseFileLock ("$lock_file");

Finally, the script prints a standard footer.

&header ("Deleting an Item from the Calendar");
print <<"    end_of_html";
<CENTER>\n<FONT SIZE = \"+3\">Your item has been deleted
</FONT>\n<P>
<INPUT TYPE = "hidden" NAME = "day"

VALUE = "$form_data{'day'}">
<INPUT TYPE = "hidden" NAME = "month"

VALUE = "$form_data{'month'}">
<INPUT TYPE = "hidden" NAME = "year" VALUE = "$current_year">
<INPUT TYPE = "submit" NAME = "change_month_year"

VALUE = "Return to the Calendar">
</CENTER></BODY></HTML>
end_of_html
exit;
}

Modifying an Event in the Database

The script can also be used to modify an item.

if ($form_data{'modify_item'} ne "")
{

First, the script must be sure that the client chose an item to modify.

&header("Modify an Item in the database");
if ($form_data{'item_to_modify'} eq "")

Chapter 13: The Groupware Calender

301



{
print <<"      end_of_html";
<CENTER><H2>Modifying an Item in the Database Error</H2></CENTER>
<BLOCKQUOTE>
I'm sorry, I was not able to modify the database because none of the

radio buttons on the table was selected so I was not sure which item
to modify.  Would you please make sure that you select an item \"and\"
fill in the new information. Just press the back button.  Thanks.
</BLOCKQUOTE>
end_of_html
exit;
}

As it did before, the script creates the lock file and the temporary file.

&GetFileLock ("$lock_file");
open (TEMPFILE, ">$temp_file") || &open_error($temp_file);
open (DATABASE, "$database_file") ||

&open_error($database_file);

And as it did for deletion, the script gets the unique database ID number
for each row by popping it out of the @fields array. But this time, it makes
sure to add the database ID number into the array so that it will have a
whole array again (push (@fields, $item_id)). Finally, as usual, the script
chops off the newline.

while (<DATABASE>)
{
@fields = split (/\|/, $_);
$item_id = pop(@fields);
chop $item_id;
push (@fields, $item_id);

If the item ID of the database row matches the one that the client submit-
ted, the script renames the @fields array to @old_fields. Otherwise, it
adds the line to the growing list of database rows in $new_data.

if ($item_id eq "$form_data{'item_to_modify'}")
{
@old_fields = @fields;
}

Chapter 13: The Groupware Calender

302



else
{
$new_data .= "$_";
}
} # End of  while (<DATABASE>)

Once it gets through all the items in the database, the script should have
found one that matched the item selected by the client, and the rest
should have been stored in $new_data. Now the script prints the rows in
$new_data to the temporary file.

print TEMPFILE "$new_data";

Then it prepares to substitute the new data submitted by the client for
the old data that was in the database. First, the script initializes a couple
of variables: $counter and $new_line. $counter will be used to keep track of
the database fields that we have edited, and $new_line will be used to cre-
ate the new database row.

$counter = 0;
$new_line = "";

Now the script begins going through the list of field_values as defined in
the setup file.

until ($counter >= @field_values)
{
$value = "";
$value = "$field_values[$counter]";

Recall that arrays begin with a zero so that the first array element is
$arrayname[0]. In this case, the script assigns the current element in
the count of field values to $value, thus going through every field in
the database.

If the form_data variable associated with that field does not have a value,
the script adds the “old” field value stored in @old_fields to the $new_line
variable.

Chapter 13: The Groupware Calender

303



if ($form_data{$value} eq "")
{
$new_line .= "$old_fields[$counter]|";
}

On the other hand, if the client submitted new information, the script
formats the information as it did for the add routine and adds the result-
ing value to $new_line.

else
{
$form_data{$value} =~ s/\n/<BR>/g;
$form_data{$value} =~ s/\r\r/<P>/g;
$form_data{$value} =~ s/\|/~:~/g;

if ($form_data{$value} eq "")
{
$form_data{$value} = "<CENTER>-</CENTER>";
}

$new_line .= "$form_data{$value}|";
} # End of else

Then it increments the counter by 1 so that the loop goes through for
every field in a database row. Once the loop is finished, the script closes
the database.

$counter++;
} # End of until ($counter >= @field_values)
chop $new_line; # take off last |

Next, the script closes everything, copies the temporary file over the orig-
inal, and releases the lock file.

print  TEMPFILE "$new_line\n";
close (TEMPFILE);
close (DATABASE);
rename ($temp_file, $database_file);
&ReleaseFileLock ("$lock_file");

Then it prints the usual footer.

Chapter 13: The Groupware Calender

304



print <<"    end_of_html";
<CENTER><H2>Your Item has been Modified</H2>
<INPUT TYPE = "hidden" NAME = "day"

VALUE = "$form_data{'day'}">
<INPUT TYPE = "hidden" NAME = "month"

VALUE = "$form_data{'month'}">
<INPUT TYPE = "hidden" NAME = "year" VALUE = "$current_year">
<INPUT TYPE = "submit" NAME = "change_month_year"

VALUE = "Return to the Calendar">
</CENTER></BODY></HTML>
end_of_html

Again, it is time to sort the entries in the database file so that when people
choose day views, their entries are ordered by time. The script creates the
lock file so that no one else can modify the database file while we are
modifying it.

&GetFileLock ("$lock_file");
open (DATABASE, "$database_file") || &open_error($database_file);

Then the script adds every row in our database file to the list array @data-
base_fields and creates $comment_row as before.

while (<DATABASE>)
{
@database_fields = split (/\|/, $_);
if ($_ =~ /^COMMENT:/)
{
$comment_row .= $_;
}

If the database row is not a comment row (COMMENT:), the script finds the
field that has the time of the event and appends it to the front of the
database row. It also adds (pushes) the whole string ($sortable_row) into a
growing array called @database_rows.

else
{
$sortable_row = "$database_fields[$field_num_time]~~";
$sortable_row .= $_;
push (@database_rows, $sortable_row);

Chapter 13: The Groupware Calender

305



}
}

When it has added all the modified rows to the array @database_rows, the
script sorts @database_rows.

@sorted_temp_database = sort (@database_rows);

Next, the script goes through @sorted_temp_database and takes out the
extra event_time string at the beginning of each database row.

foreach $database_row (@sorted_temp_database)
{
($extra_event_time, $true_database_row) =

split (/:/, $database_row);
push (@final_sorted_database, $true_database_row);
}

close (DATABASE);

Then the script creates the temporary file for the modification as it did
for the addition.

open (TEMPFILE, ">$temp_file") ||
&open_error($temp_file);

print TEMPFILE "$comment_row";

Next, for each of the database rows stored in @final_sorted_database, the
script prints to the temporary file.

foreach $row (@final_sorted_database)
{
print TEMPFILE "$row";
}

close (TEMPFILE);

Finally, the script copies the temporary file over the original database file so
that the resulting file will represent the sort. Then the lock file is removed.

rename ($temp_file, $database_file);
&ReleaseFileLock ("$lock_file");
exit;
}

Chapter 13: The Groupware Calender

306



Displaying the Default Error

The script adds a default in case clients got through everything without
finding what they wanted (probably because they pressed Return when
typing into a text box).

&header("Wooopsy");
print <<"  end_of_html";
<BLOCKQUOTE>I'm sorry, you are not allowed to press the Return key
when typing in your subject.  Please press the back button and try
again.</BLOCKQUOTE><CENTER>
<INPUT TYPE = "submit" NAME = "change_month_year"

VALUE = "Return to the Calendar">
</CENTER></BODY></HTML>
end_of_html

The make_month_array Subroutine

The make_month_array subroutine is used to generate the month arrays
used by the main routine.

sub make_month_array
{

First, the subroutine defines some variables that will be local to this sub-
routine.

local($juldate)  = $_[0];
local($month,$day,$year,$weekday);
local($tempjdate,$firstweekday,$numdays,$lastweekday);
local(@myarray);

Next, the subroutine defines variables based upon the passed parameter.

($month, $day, $year, $weekday) = &jdate($juldate);

Then make_month_array makes a new date based on the first of the month.

$tempjdate = &jday($month, 1, $year);

Chapter 13: The Groupware Calender

307



make_month_array also gets the weekday of the first of the month and then
builds @myarray to be passed to the main routine.

($month, $day, $year, $weekday) = &jdate($tempjdate);
$firstweekday = $weekday;
$currentmonth = "$month";
$currentyear = "$year";
$month++;
if ($month > 12)
{
$month = 1;
$year++;
}

$tempjdate = &jday($month,1,$year);
$tempjdate—;
($month, $day, $year, $weekday) = &jdate($tempjdate);
$numdays = $day;
$lastweekday = $weekday;

for ($x = 0;$x < $firstweekday; $x++)
{
$myarray[$x] = " ";
} # End of for

for ($x = 1; $x <= $numdays; $x++ )
{
$myarray[$x + $firstweekday - 1] = $x;
}

for ($x = $lastweekday; $x < 6; $x++)
{
push(@myarray,"");
}

return @myarray;
}

The CgiRequire Subroutine

This subroutine checks to see whether the file that we are trying to require
exists and is readable by us. This subroutine provides developers with an
informative error message when they’re attempting to debug the scripts.

Chapter 13: The Groupware Calender

308



sub CgiRequire
{

First, the @require_files array is defined as a local array and is filled with
the filenames sent from the main routine.

local (@require_files) = @_;

The subroutine then checks to see whether the files exist and are read-
able. If they are, the files are loaded.

foreach $file (@require_files)
{
if (-e "$file" && -r "$file")
{
require "$file";
}

If any of the files are not readable or do not exist, the subroutine sends
an error message that identifies the problem.

else
{
print "I'm sorry, I was not able to open
$file.  Would you please check to make sure
that you gave me a valid filename and that the
permissions on $file are set to allow me
access?";
exit;
}
} # End of foreach $file (@require_files)
} # End of sub CgiRequire

The select_a_month Subroutine

The select_a_month subroutine is used to generate a select list of months
that the client can use to select months in the various forms throughout
the script. It is a straightforward routine with no new syntax.

sub select_a_month
{

Chapter 13: The Groupware Calender

309



print "<SELECT NAME=\"month\">\n";
foreach $month (@month_names)
{
if ($month ne "$current_month_name")
{
print "<OPTION VALUE =

\"$MONTH_ARRAY{$month}\">$month\n";
}

else
{
print "<OPTION SELECTED VALUE =

\"$MONTH_ARRAY{$month}\">$month\n";
}

}
print "</SELECT>\n";
}

The select_a_year Subroutine

As with select_a_month, the select_a_year subroutine generates a select
input tag and options for the client to select from a list of years. The only
thing of note in this subroutine is that $the_current_year is defined in the
setup file and must be changed annually.

sub select_a_year
{
print "<SELECT NAME = \"year\">\n";

for ($i = $the_current_year; $i < $greatest_year; $i++)
{
if ($i eq "$currentyear")
{
print "<OPTION SELECTED VALUE = \"$i\">$i\n";
}

else
{
print "<OPTION VALUE = \"$i\">$i\n";
}

}
print "</SELECT>\n";
}

Chapter 13: The Groupware Calender

310



The submission_form Subroutine

The submission_form subroutine is used to generate a form that clients
can use to submit new events to the database. As with the previous sub-
routines, the logic includes no new Perl tricks or syntax.

sub submission_form
{
local ($type_of_form) = @_;

if ($session_first_name ne "")
{
print <<"      end_of_html";
<TABLE BORDER = "0" CELLSPACING = "2"

CELLPADDING = "2">
<TR ALIGN = "LEFT">
<TH>Name</TH>
<TD>$session_first_name $session_last_name</TD>
<TR ALIGN = "LEFT">
<TH>Email</TH>
<TD>$session_email</TD>
</TR>
end_of_html
}

else
{
print <<"      end_of_html";
<TABLE BORDER = "0" CELLSPACING = "2"

CELLPADDING = "2">
<TR ALIGN = "LEFT">
<TH>First Name</TH>
<TD><INPUT TYPE = "text" NAME = "first_name"

SIZE = "20" MAXLENGTH = "20"></TD>
</TR>
<TR ALIGN = "LEFT">
<TH>Last Name</TH>
<TD><INPUT TYPE = "text" NAME = "last_name"

SIZE = "20" MAXLENGTH = "20"></TD>
</TR>
<TR ALIGN = "LEFT">
<TH>Email</TH>
<TD><INPUT TYPE = "text" NAME = "email" SIZE = "20"

MAXLENGTH = "20"></TD>
</TR>

Chapter 13: The Groupware Calender

311



end_of_html
}

print <<"    end_of_html";
<TR ALIGN = "LEFT">
<TH>Subject</TH>
<TD><INPUT TYPE = "text" NAME = "subject" SIZE = "20"

MAXLENGTH = "20"></TD>
</TR>
<TR ALIGN = "LEFT">
<TH>Year</TH>
<TD>
end_of_html
&select_a_year;
print <<"    end_of_html";
</TD>
</TR>
<TR ALIGN = "LEFT">
<TH>Time</TH>
<TD>
<SELECT NAME = "time">
end_of_html
if ($type_of_form eq "modify")
{
print "<OPTION VALUE = \"\">Don't Change Time\n";
}

foreach $time_value (@time_values)
{
if ($time_value ne "09:00")
{
print "<OPTION VALUE =

\"$time_value\">$TIME{$time_value}\n";
}

else
{
if ($type_of_form ne "modify")
{
print "<OPTION SELECTED VALUE =

\"$time_value\">$TIME{$time_value}\n";
}

}
}

print "</SELECT></TD></TR>\n";

print "<TR>\n<TH>Month</TH>\n";
print "<TD>\n";
&select_a_month;
print "</TD>\n";

Chapter 13: The Groupware Calender

312



print "</TR>";

print "<TR ALIGN=LEFT>\n";
print "<TH>Day</TH>\n";
print "<TD><SELECT NAME=\"day\">\n";
for ($i = 1; $i < 32; $i++)
{
if ($i eq "$form_data{'day'}")
{
print "<OPTION SELECTED VALUE = \"$i\">$i\n";
}
else
{
print "<OPTION VALUE = \"$i\">$i\n";
}

}
print <<"    end_of_html";
</SELECT></TD>
</TR>
<TR ALIGN=LEFT>
<TH>Body</TH>
<TD><TEXTAREA WRAP = "virtual" NAME = "body" ROWS = "8"

COLS = "40"></TEXTAREA></TD>
</TR>
</TABLE>
end_of_html
}

The Header Subroutine

The header subroutine is used by the main script to generate the HTML
header common to every script-generated HTML page.

sub header
{
local ($title) = @_;
if ($title eq "")
{
$title = "Selena Sol's Groupware Calendar Demo";
}

print <<"    end_of_html";
<HTML><HEAD><TITLE>$title</TITLE></HEAD>
<BODY>
<FORM METHOD = "post" ACTION = "$this_script_url">

Chapter 13: The Groupware Calender

313



<INPUT TYPE = "hidden" NAME = "session_file"
VALUE = "$session_file">

<INPUT TYPE = "hidden" NAME = "calendar"
VALUE = "$form_data{'calendar'}">

end_of_html
}

Chapter 13: The Groupware Calender

314


