
783

A P P E N D I X B

The Future Of Perl & CGI
Programming

OVERVIEW

Although Perl 5 has been available for quite a while now, not many CGI
authors have taken advantage of Perl 5 specific features. There are sever-
al reasons for this. First of all, not all Internet Service Providers (ISPs)
have upgraded to Perl 5. It is very frustrating to write a Perl /CGI pro-
gram for the masses only to discover that a large number of people can-
not use your program because they are still stuck using Perl 4. Second,
there is not a great deal of information about Perl 5 released yet. The
O’Reilly books on Perl discussed in Appendix A are the de facto standard
reference guides for the language, yet as of this writing, they have not
been updated to include information about Perl 5.

However, the future of Perl 5 looks bright. More and more ISPs are
upgrading their Perl executables to version 5. And as time goes on, literature
about Perl 5 will be released into the hands of willing and able program-

mers. In addition, Perl 5-specific libraries for handling CGI programming
are out now. The most popular of these is Lincoln Stein’s CGI.pm module.
Because CGI.pm takes advantage of the new features in Perl 5, it is a much
more powerful library than CGI-LIB.PL. This in itself will entice more and
more CGI programmers over to Perl 5 and CGI.pm. While we will not go
into the details of either Perl 5 or CGI.pm, a brief overview should impress
upon you some of the advanced features that can be utilized when you
decide to make the move to the next generation of Perl and CGI. CGI.PM is
also included on the CD-ROM accompanying this book for your own use.

PERL 5

Perl 5 does not actually add a lot more features to Perl 4, but those that it
does add are fairly significant. For example, the ability to do object-ori-
ented programming in Perl 5 can change the way that entire Perl pro-
grams are written.

Object-Oriented Programming

Perl 5 now includes a number of features that support object-oriented
programming (OOP). Basically, OOP allows you to encapsulate data and
the functions that operate on that data. Encapsulating data in this way
allows you to change the internal structure of an object without affecting
the rest of the program. This can make programs more modular and effi-
cient. In addition, rather than writing new objects each time you want to
perform a new type of task, you can expand upon more generic objects
by inheriting the capabilities of those objects.

Arbitrarily Nested Data Structures

In Perl 4, arrays only have one dimension. In other words, you can only
store items as a single list in an array referenced by one index number.
Perl 5 enables you to use nested data structures where arrays can refer-
ence other variables and other arrays. This allows you to form multi-

Appendix B: The Future of Perl and CGI Programming

784

dimensional arrays that can model the real-world more effectively. For
example, the contents of a chess board or pixels on a computer screen
are more easily modeled in terms of X and Y coordinates (2 dimensions).
A two-dimensional array that takes two index numbers (X and Y coordi-
nates) can easily represent these types of objects.

The following would be an example of a chess board array mapping
numeric index coordinates to the equivalent algebraic notation (letter
plus number coordinates) using Perl 5:

$chess =[['a1','a2','a3','a4','a5','a6','a7','a8'],
['b1','b2','b3','b4','b5','b6','b7','b8'],
['c1','c2','c3','c4','c5','c6','c7','c8'],
['d1','d2','d3','d4','d5','d6','d7','d8'],
['e1','e2','e3','e4','e5','e6','e7','e8'],
['f1','f2','f3','f4','f5','f6','f7','f8'],
['g1','g2','g3','g4','g5','g6','g7','g8'],
['h1','h2','h3','h4','h5','h6','h7','h8']];

print "$chess->[0][0]\n";
print "$chess->[1][2]\n";
print "$chess->[7][7]\n";

The above code would produce the following output:

a1
b3
h8

Regular Expression Enhancements

Perl 5 contains enhancements to the regular expression engine in Perl.
There are a couple new pattern match operators for use within a regular
expression as well as new arguments for use with the s (substitution) and
m (match) Perl commands.

Grouping Paired Arguments

Perl 5 now allows you to substitute “=>” for the comma “,” in a list. This
allows you to write your code in such a way that associative array references

Appendix B: The Future of Perl and CGI Programming

785

are really obvious. For example, in Appendix A, we learned to create an
associative array by making a list of pairs. An example of this appears below:

%program_authors =
("chat", "Gunther Birznieks",
"shopping cart", "Selena Sol");

In Perl 5, you could also create the same array as:

%program_authors =
("chat" => "Gunther Birznieks",
"shopping cart" => "Selena Sol");

Here it becomes much more obvious which elements are associated with
which other elements in the associative array.

Dynamic Modules

Perl 5 allows modules to be loaded on an “as-needed” basis rather than
always loading all the routines into memory with the require command
like Perl 4 does. The require command in Perl basically loads and compiles
the entire library at once which takes up extra time and resources. Using
dynamically loaded modules that only load when needed can increase per-
formance significantly if you use a lot of external modules/libraries and do
not necessarily use all the routines within them.

Perl 4 To Perl 5 Migration Issues

Unfortunately, with the advanced features that Perl 5 offers, there are
also some issues involved with making sure a program will run under Perl
5. Thankfully, the changes are really not that difficult to implement.

First, the at symbol (@) must be escaped inside a string in Perl 5. For
example, if you have an assignment such as the following:

$myaddress = "gunther@foobar.com";

then this must be replaced with

Appendix B: The Future of Perl and CGI Programming

786

$myaddress = "gunther\@foobar.com";

In addition, parenthesis must be used to place parameters for calls to
subroutines. For example, in Perl 4, the following is acceptable:

open FILEHANDLE || &CgiDie("File Not Opened");

but in Perl 5, the “FILEHANDLE” argument must be encapsulated with
parenthesis:

open (FILEHANDLE) || &CgiDie("File Not Opened");

In Perl 4, you could sometimes leave quotes off of strings. However,
you should always use quotes (or at least some other character) to delim-
it strings in Perl 5 or you may risk the elements in the string being inter-
preted as function calls.

Finally, the package delimiter in Perl 5 has changed to double-colons
(::) from the apostrophe (‘) that was used in Perl 4. However, this is not
strictly enforced so, for now, it is not vital that you switch over to the new
method, but keep in mind that this may not always be the case in the future.

Web Servers Pre-loading Perl (Windows NT)

Some Web Servers on Windows NT now have the capability of loading Perl
5 and running it permanently in memory. Normally, when a Perl CGI pro-
gram is called from a Web server, Perl is loaded in memory, the script is
executed, and Perl unloads in memory. The Web Servers that can keep
Perl loaded in memory avoid the extra steps of always loading Perl and
then unloading it. This can result in a significant performance increase for
your server depending on how many Perl-based CGI programs run on it.

This is not necessarily a Perl 5 specific feature. Currently, only one
implementation of Perl 5 on Windows NT supports this functionality.
However, we are listing it as an enhancement if you are moving to the
flavor of Perl 5 on Windows NT which supports the pre-loading of Perl.

Appendix B: The Future of Perl and CGI Programming

787

CGI.PM

CGI.pm was written by Lincoln Stein as a Perl 5 module to perform CGI
programming tasks. However, CGI.pm goes beyond the features of CGI-
LIB.PL for Perl 4 discussed in Chapter Five since it takes advantage of
the features in Perl 5.

Object-Oriented

When CGI.pm is used by a Perl 5 program, the “new” operator is used to
construct a CGI object. When the “new” operator is called, Perl creates
the CGI.pm object and automatically parses and reads in the form vari-
able names that have been passed to the script. From then on, the object
can be referred to in order to read the parameters or perform other
CGI-related operations. For example, if $cgi was set up as the CGI object,
we would use the following code to bring it to life:

use CGI;
$cgi = new CGI;

After these few lines, any reference to CGI routines can be made by using
the $cgi object that has been created. For example, to get all the form vari-
ables that have been passed to your CGI script, simply use the following
code:

@parameters = $cgi->param;

To get a specific form variable such as “email_address” use the following
code:

$email = $cgi->param('email_address');

Values split automatically into arrays

Normally, you can access form variables inside the CGI object by using
the param method. For example, to get the value of a “first_name” form

Appendix B: The Future of Perl and CGI Programming

788

variable from the $cgi object, you would use the following code:

$firstname = $cgi->param("first_name");

But what about multi-valued form variables such as multiple selection list
boxes? In CGI-LIB.PL, we have to explicitly call the SplitParam function
on the returned value in order to split the form variable’s values into an
array. With CGI.pm, all you have to do is reference the param method
with an array and the elements will be automatically parsed out into this
array without doing any extra work! For example, if I had selected the
items “English”, “French”, and “German” among the languages that I
know from a multi-select list box, then the following would break down
this form variable value into its constituent elements.

@langs = $cgi->param("which_languages_do_you_know");

@langs would now contain “English,” “French,” and “German” as elements.

Environment Variables

The environment variables that are associated with CGI are already parsed
and defined in the CGI object that CGI.pm creates. For example, to refer-
ence the server name, simply use $cgi ->server_name(). Each environ-
ment variable is referenced as a method in the $cgi object used above.

Migration From CGI-LIB.PL

Since there are many programs written to use CGI-LIB.PL, CGI.pm
includes the capability of being compatible with most of CGI-LIB.PL’s
syntax. This is accomplished by using the following commands:

use CGI qw(:cgi-lib);
&ReadParse;

By using these commands, the form variables are read into the “%in”
associative array just as they would be in CGI-LIB.PL. However, CGI.pm
goes one step further. In addition to being able to use “%in”, you can still

Appendix B: The Future of Perl and CGI Programming

789

use the functions of the CGI object itself to manipulate the form vari-
ables and these changes will be reflected automatically in the “%in” asso-
ciative array.

Dynamic Form Creation

CGI.pm supports a variety of functions to automatically create various
headers, footers, forms, input fields, and a lot of other commonly used
HTML tags. You may recall from Chapter Ten that CGI-LIB.SOL was writ-
ten to do a similar task. CGI.pm has more features and is integrated with
the main library without needing to call another set of routines. For
example, to create a text field with the $cgi object in CGI.pm, you would
use the following code:

print $cgi->textfield(-name=>'first_name',
-value=>'Gunther');

Saving State

A powerful feature of CGI.pm is the integrated ability to maintain “state.”
Many chapters of this book rely on the scripts being able to recognize the
different users who are currently using an application such as the BBS or
Chat without having to ask for their user information over and over
again. CGI.pm allows the current form variable values to be written to a
file. This file can be reloaded at a later time in order to retrieve the previ-
ous state of the form.

Standard HTTP Headers

CGI.pm also provides functions for printing the standard HTTP CGI
header (“Content-type: text/html\n\n”) as well as many other headers.
For example, CGI.pm can send a redirection signal to a user’s Web
browser to tell them to go to another site just like we discussed previously
in Chapter Twenty-Four about the Advertising Tracker. In addition,
CGI.PM can generate and retrieve Netscape cookie information.

Appendix B: The Future of Perl and CGI Programming

790

CONCLUSION

Perl 5 and CGI.pm clearly have a lot to offer CGI programmers. It is just
a matter of time before Internet Service Providers are pressured into
upgrading their versions of Perl, and programmers start getting their
hands on Perl 5 books. When these things happen, the advantages of
using Perl 5 and CGI.pm will play a significant role in the future of CGI
programming.

Appendix B: The Future of Perl and CGI Programming

791

