
The Web Store
Shopping cart applications are some of the most popular, interesting to customize,
and technically demanding CGI applications currently in use on the Web. Such
applications allow companies to display their inventories online so that clients can
quickly and easily browse through and order items of interest (Figure I.1).

Some of the more famous and groundbreaking examples include Virtual
Vineyards (http://www.virtualvin.com/) and CD-Now (http://www.cdnow.com/).
Both of these sites generate large sums of money from virtual clients through
their user-friendly interfaces and sleek design. Because the warehouses are virtual
and the sales staff are automated, the virtual store is a profitable option for many
small and midsize businesses that want to gain instant access to a global market.
Web stores can also provide larger, established companies with alternative outlets
for their products, as well as a continued presence in emerging markets.

1

IN T R O D U C T I O NIN T R O D U C T I O N



Figure I.1 Americal Web store customized by IDEA PRO Online
Marketing at http://www.silicon.net/~tbond.

In addition, the customers receive the benefits of dynamic, customizable
browsing tools. Rather than deal with mail-order catalogs, 1-800 numbers, or
fax (or worse yet, snail mail–based) order forms, a customer need only navigate
over to their favorite store on the World Wide Web, click to their section of
interest, add some items to their virtual shopping cart, type in some shipping
information, and submit the information over a secure channel of the Internet.
As David Cook writes in Launching a Business on the Web, “The idea of a virtual
shopping system is to make the job of picking products as painless as possible.
In essence, we want the user to do no more than simply point to a picture or
word to purchase an item.”

And yet, however invisible and seamless the application is to the customer,
an online store is a demanding application to program, customize, and install
because it integrates many Web/CGI functions into one system. Consider the
complexity for a programmer. A shopping cart application must be able to
manage every function of shopping, not only from the perspective of the cus-
tomer but from that of the vendor as well.

I N T R O D U C T I O N2



Figure I-2 Image of the Web store.

Store Management from the
Vendor’s Perspective
For one thing, the application must be able to manage and display the stores
inventory. That is, the application must be able to keep track of every item in
the store and to present those items in an efficient and sensible way. Think of
this function as that of the store employee who must continually restock the
shelves of the store with new items, change some prices here, remove some
items there, introduce “specials,” and generally make sure that aisles are clean,
current, and organized for the convenience of customers.

I N T R O D U C T I O N 3



In terms of the Web Store application, the program must be able to gener-
ate and display HTML “product pages” that can be browsed according to the
needs of the client. There are many different ways these product pages can be
displayed to the user. For example, they might be organized hierarchically,
according to categories and subcategories of products or they might be gener-
ated dynamically based on the customer’s search criteria. Further, depending
on the desires of the vendor and the demands of the inventory itself, the inven-
tory might be physically stored as a simple ASCII text flat file, in an SQL data-
base, or as a series of predesigned HTML pages. The shopping cart system
must be flexible and intelligent enough to produce a consistent look and feel
while the specific display of items is changing based on the customer’s desires.

Figure I.3 Product page from the Smokin’ Joe Web store.

I N T R O D U C T I O N4



A further complication lies in the fact that every item must be uniquely identi-
fied and may have unique qualities that differentiate it from other items, even
within the same category. One good example of this is the application of
options. Many items, even within the same category may have different options
available. For example, in an online music shop, certain albums might come in
CD format only, in both tape and CD format, or even LP only. The Web store
application must have a means for interpreting such unique qualities for every
item and incorporating them into the logic of the process. In a store with 1000
items, there may be up to a 1000 special cases.

Figure I.4 Vowels.html page with options.

I N T R O D U C T I O N 5



The Web store must also be able to keep track of many customers simultane-
ously, all of whom are at different points in the shopping process. Some of
those clients might be just entering the store, some might be at the virtual cash
register, and others might be browsing the shelves casually or with a specific
product in mind. The Web store must be able to handle each of these situa-
tions so seamlessly that each customer feels as if he or she is the only customer
in the store. Speed and consistency are paramount.

Keeping track of visitors also involves administrative functions. For example,
just as someone must constantly keep track of used shopping carts in the parking
lot of your local supermarket, so must the Web store application deal with its
own old, used shopping carts. After all, it would not do to continually save all the
carts used by all the customers. If all goes well and your products attract droves
of browsing clients, you might generate hundreds of carts per day. Though each
cart will occupy only a small amount of space on your server, when combined,
the set of all carts could cause your server’s hard disk to fill up quickly. Thus, the
application must be responsible for pruning old carts at a regular interval.

Another administrative function is that of logging accesses and errors.
Every new client will bring a set of valuable data that if gathered and inter-
preted wisely, could yield insights crucial to your continued success. How many
of your clients are international? How many are repeat visitors? Which pages
do clients most often request? Which items do they most often buy? What per-
cent of your visitors use Netscape? When are your daily peak hours? These are
the kinds of data that should be available in your access logs for analysis.

Similarly, you should have a complete error log. Have there been any
attempted hacks? Are there errors in your configuration that slipped by you?
Has some environment variable on your server changed that demands your
attention, such as a change in permissions? The error log can be used to
quickly diagnose problems with the application as it evolves. In some cases, a
well-analyzed error log can save you from having to hire a programming con-
sultant to do troubleshooting.

Finally, the Web store must be your cashier, totaling up shopping carts full
of items and accepting payment from customers. In doing so, it must be able to
handle your local taxes, shipping costs, discounts, specials, and any number of
surprise price modifications on the fly for every customer.

I N T R O D U C T I O N6



More crucially, the Web store must do this flawlessly and securely. Not
only must the connection between the browser and server be secure (an issue
between you and your ISP), but orders must then be sent securely from the
server to the person handling order processing. What good is a powerful and
expensive SSL account if the customer’s credit card and personal information
are sent via unprotected email to the store owner? A secure store is only as
secure as its weakest link. The Web store must be able to support SSL technol-
ogy and provide a secure method of getting that information from the secure
server to the store owner or administrator for processing.

Whatever the case, the application must be able to quickly provide a virtual
store environment with seamless access to products. At this infant stage of the
Web, there are already enough barriers between the clients and vendors: speed,
ignorance, unfamiliarity, and more; the Web store technology must not add
another barrier. It must be an interface that makes the user want to come back.

Shopping from the Customer’s
Perspective
The Web store is also responsible for handling the needs of the customer. It
must follow each client through the store, even if there are dozens of clients
shopping simultaneously, and act as his or her personal shopping servant.
When the customer says “grab this item,” the Web store must do so. It must
also be able to get more than one item or to put all the items back on the vir-
tual shelves if so instructed. The shopping cart itself is actually a database file
that is built and modified on the fly based on the client’s needs. The mainte-
nance of the cart, therefore, requires a database management system capable of
handling the addition, modification, and deletion of items in the cart.

However, the script must do more than just display and modify the shop-
ping cart. It must also manipulate the database fields to perform price calcula-
tions, such as calculating a subtotal for each item purchased and generating a
grand total from the subtotals in a cart. Furthermore, the Web store must do
this for every customer independently using a technique to maintain the state
of where each customer is in his or her shopping process.

I N T R O D U C T I O N 7



Before we discuss how the script maintains this “state,” a short discussion
of client/server technology is in order. When you type a URL into the location
window of your favorite browser and hit Enter, you are becoming a client to
some server from which you are requesting a service. Typically, you will be ask-
ing the server to send you a document formatted with HyperText Markup
Language (HTML). In the case of CGI, such as a Web store, you ask the
server to execute a program and return the results of the processing.
Unfortunately, that is all there is to the Web. There is no continuous discus-
sion, dialog, or connection. There is only a simple one-time query and
response each time a document or CGI script is requested.

One of the facts of life of client/server architecture is that each request
sent from a client and processed by a server is considered a new and unique
one. That is, there is only a series of unrelated queries and responses. The
server maintains no link with its clients. Instead, the server simply, blindly, and
automatically waits for a query, answers the query, and settles back down to
wait for the next query to arrive. You may ask it for a second document by
clicking another hyperlink or a Submit button, but the server will treat you as
the unknown stranger that you are. It will not “remember” anything about you
or your past interactions with it.

So, how do you create a complex relationship between a customer and a
vendor using a Web script? For example, in order for each client to maintain a
unique set of shopping cart items, the application must keep track of each
client and each clients virtual cart. Maintaining state, as this is called, is difficult
because HTTP, as we have mentioned, is a “connectionless” protocol. Every
time a Web browser requests the attention of your server, it is considered a
new request, unrelated to any other requests fulfilled by the server. Because
each request is considered independently of others, the server has no way to
keep track of what clients have added to their carts in the past.

It is possible for the browser software to be made responsible for remembering
this information using technology like Netscape Cookies. However, using cookies
is not the best solution for an online store that hopes to serve customers using a
wide assortment of browsers that may not adhere to Netscape’s proprietary
cookie standard. Furthermore, even the customers who do use Netscape may
have the cookies feature turned off for security reasons.

I N T R O D U C T I O N8



To solve this problem, the application becomes a self-referential script. It con-
tinuously calls itself for every request made by the client. However, when it
calls itself, it passes to itself information about how to process the new request
and information specific to the history of the relationship with the current
client. In the case of the clients shopping cart items, the script will pass to itself
the location of the clients cart on the server. This cart file will keep track of the
items previously purchased. By providing the location in each call, the script
continues to keep track of each client and cart.

The Web store does all this while still performing all the usual CGI func-
tions, including reading and parsing incoming form data, checking that form
data against bad input, emailing orders, and communicating with the browser
via HTTP.

How This Book Is Structured
As you can see, the Web store application has a lot on its plate. The rest of this
book will delve into the complex methodology used to solve these problems
and provide a manageable framework for you to install and customize the rou-
tines for your own unique needs.

The book is divided into three sections.

Part One focuses on the process of downloading, customizing, and run-
ning the Web store application. Contained in 10 chapters, Part One goes
through several common types of installations, discussing the many facets of
customization from configuring your GUI to handling specific order logic
ranging from discounts to shipping costs to zip code calculations. This part
concludes with a discussion of methods of log analysis and secure shopping
with which you can streamline and enhance the functionality and security of
your store.

Part Two takes a more in depth look at the scripts that make up the application
themselves. This part looks at the actual code of the application, stripping each
routine down to its bare algorithms to explain the deep logic behind the store.
This application is very powerful because, due to its modularity, you can change
not only the look and feel quite a bit, but also the logic and capabilities. After all,
you may find down the road that there are features you would like to add that are

I N T R O D U C T I O N 9



unique to your own installation or inventory that are not necessarily appropri-
ate for, or coded within, the generic store. These chapters should give you a
firm grasp of how to add or remove from the programming of the Web store’s
core capabilities.

Finally, two appendices close the book. Appendix A discusses the format
and usage of the CD-ROM and Appendix B reviews some of the basic tenets of
Perl CGI.

Who This Book Is For
This book was primarily written for Web/CGI programmers who wish to set
up online stores and programmers who are interested in examining a real-
world CGI application that uses nearly every available feature in the CGI/Perl
programmer arsenal. Secondly, content providers who are interested in
expanding their services beyond simple HTML pages will benefit from the
book as a primer on how to set up an online store.

All levels of programmers can benefit from this book. For example, the
beginning CGI developer can use the book as a straightforward, example-
based way of learning CGI while obtaining information on how to set up a
useful real-world script. The script is explained simply enough that we hope it
will be accessible to all, and we have taken great pains to isolate the basic
installation and usage issues into their own part so that nonprogrammers do
not need to spend much time deciphering the code if all they want to do is run
the scripts.

Additionally, this book is for advanced CGI developers who are looking for
a good, well-documented script that they can sink their teeth into to learn
more about how a large, complex CGI application fits together. The discussion
in Part Two about the details of the code behind the Web store application will
help advanced developers to actually go in and customize the source code to
the needs of their more demanding customers.

I N T R O D U C T I O N1 0


