CHAPTER FOUR

FOCUS ON THE
DATABASE STORE

The Database store generates product pages dynamically from an ASCII text
file (flatfile) that contains a pipe-delimited database. The Database store has
several important advantages over the HTML store. First and foremost, using
a database means that the store administrator need not code any HT'ML. This
can save a lot of time and energy for stores with extensive inventories of hun-
dreds or even thousands of items (see Figure 4.1). Because the Web store is
designed to generate HTML pages dynamically from the database, the store
administrator need only prepare the database (often a preexisting database
reformatted to be delimited by the pipe (I) symbol). There is no need to code
an HTML page for every product category. And as we will see in Chapter 5,
the database back end facilitates more complex search algorithms.

93

94

e [4 jwm bn Brammis Dorvs i gess Hey
e 1] = i =
ElelalxrEla|ae
#A mefr— i T TR T ;...u._-.ﬂﬂ
=l
- el - by =
| gt of §
— -';:' 2 e 4 a
g
- i i, e [-
-
o r5
o b " . o
- i o
ek |
— bl e x a
g
— i b e .
g
I_ e e - =
J H
rat
Sddbpnmreyed | viesedicCed | PewroFoorse | H
_Cecassued | |
Al | Bmesrsl D (=]

Figure 4.1 The Database product page.

The second benefit is the ability to lessen dependence on HTML code that
can be manipulated by the sly customer. Instead, cart contents are generated
and checked from your local database and not from hidden elements in the
HTML. There is continual error checking at all points in the shopping process
to make sure that prices of items in the cart match prices in the database.

Finally, through the use of the format strings in the Setup file and coded
URLs in the data file, you can devise quite complicated and creative displays
for products. Even though every product must be presented in a standard for-
mat, that format can be quite complex or graphic-intensive, even mimicking
some of the more standardized HTML store displays.

As with the HT'ML store, many companies have opted for the Database
version in the past. These versions can all be found in the second half of the

Focus oN THE DATABASE STORE 95

Scripts in Action list at http://www.eff.org/~erict/Scripts/web_store.html. If
you are interested in seeing how others have utilized the Database back end,
we recommend taking a few minutes to browse through the examples there.

Customizing the Setup File

As with all versions of this script, the first thing you must do is to customize
the Setup file. For the most part, the setup file for the Database store will be
like any other implementation. Eighty percent of the setup should remain con-
stant throughout all the versions. However, there will be some differences. In
the following section, we will go through web_store.setup.db and highlight
variables specific to the Database store and explain their usage. Variables not
mentioned should be considered globally important to all versions of the store
and will be defined the same way regardless of which implementation you
choose. They are also discussed in Chapter 2.

Global File Location Variables

The first variable of interest in web_store.setup.db, which is an example
setup file in the distribution, is $sc_html_search_routines_library_path.
$sc_html_search_routines_library_path defines the location of
web_store_html_search.pl which is used to perform searches in the Products
subdirectory of the HTML directory. Because we will be searching the data
file directly, there will be no need to search the product pages in the Products
subdirectory and no need for that variable. However, we will still have to
define $sc_html_product_directory_path, because we will store list of prod-
uct pages in that directory.

Since we will be searching the data file in order to generate product pages,
$sc_data_file_path must be defined and pointed at the location of the data file
and $sc_db_lib_path must be defined and set equal to the location of
web_store_db_lib.pl.

$sc_options_directory_path defines the locations of the Options files
used by the Database store to create option-related HTML. This must be set

o+

relative to the script or absolutely based upon the server’s directory structure.
The options files themselves will be discussed later in this chapter.

$sc_store_front_path must point to a frontpage specific to a Database
implementation. Because hyperlink references differ slightly in the Database
and HTML implementations, you may not use the same front page for both.
When composing hyperlinks, we will use the product keyword when pointing
to product pages instead of the page keyword. The page keyword will be
reserved for pointing to list of product pages, which are simply HTML pages
that contain hyperlinks to product pages.

An example of a hyperlink to a list of products page can be seen in
outlet_frontpage.db.html in the hyperlink referencing, Letters.html.

Figure 4.2 shows Letters.html as it appears on the Web:

Bie [8 e B Bowemn Jowews [eeeenm igwsbes Hep
zlz|alalv|glele]e]

B Bl e e e s i B ﬂﬂ
| L= 5

Figure 4.2 Letters.html

Notice that in the above URL, we have passed to the script the variable page
with the value of Letters.html. (We will discuss the cart_id= tag later).
Letters.html is an example of a list of products page, which is simply a subcat-
egory with links to two product pages, Vowels and Consonants. Because we
do not want to generate that page from the database, we tell the script to go to
the Html/Products subdirectory and grab Letters.html for display.

Focus oN THE DATABASE STORE

$sc_html_product_directory_path provides it with the information it needs
to find Letters.html. Thus, if you set this variable equal to:

/usr/1ocal / httpd/cgi-bin/Wb_store/ Hm/Products/
the script will expect to find the file using the following location:
/usr/local /httpd/cgi-bin/ Vb _store/Hm/Products/Letters. htm

You may also define subdirectories in your hyperlink calls if you decide to partition
your HTML product pages. Thus, the following hyperlink would access
Lower_case.html in the subdirectory:

/usr/local /httpd/cgi-bin/\VWb_store/ Hnl/Products/Letters/Vowel s/

<A HREF =

“web_store. cgi ?page=Letters/Vowel s/ Lower _case. ht m &art _i d=">Vowel s</ A
>

Unlike the HTML store, however, the Database store cannot use the page
variable to display product pages because no HTML product pages actually
exist. The Web store must be responsible for generating product pages on the
fly based upon which products the customer wants to see.

This chore is handled by using the product keyword in the hyperlinks
leading to product pages. Consider the following hyperlink to the “Numbers”
Page:

Notice that we use the keyword product to specify those items in the data file
we want displayed for the customer. The value associated with the product’s
keyword will correspond to a field in the database that you will use to group
products that should be displayed on the same product page. Thus, every item
with a Products field equal to Numbers will be displayed when one clicks on
the above link.

There will be more details on how to set up your products fields and how
the script knows which field to search when we discuss the Database definition

97

o+

variables in the Setup file, but it is important to drive home the fact that the
page variable is used only for list of products pages and that the products key-
word is used to point to product pages.

Understanding Tags for Maintaining State

Now that we have opened the list of products discussion and introduced the
strange cart_id= tag, we need to take a moment to explain state maintenance
tags in more detail. The trick about list of product pages such as Letters.html
is that they are tagged so that web_store.cgi can automatically insert state
information when it filters them.

As we said in Chapter 2, all HTML pages must be filtered through
web_store.cgi if the customer’s state information is to be maintained. When
using list of product pages, there are two items of state information that must
be passed: (1) the product page from the list that the customer wants to see and
(2) the location of the customer’s unique shopping cart.

In fact, every internal-store hyperlink (most commonly used in list of
product pages) must communicate that information. The problem is that when
you write the list of product pages in HI'ML, there is no way for you to know
in advance what the cart i.d. will be. In fact, many different customers, all with
different cart i.d.s will be navigating through the same page. There is no way
to hard code that information into your HTML. But you can provide a tag
which the script will recognize and dynamically exchange for the current value
it has for the customer’s cart.

This line is handled in the display_page subroutine in web_store.cgi:
s/cart_id=/cart_id=$cart_id/g;
This line assures that every HTML page passed to web-store.cgi will be filtered
for these two state variables. Let’s consider the line in outlet_front

page.db.html discussed above:

Focus oN THE DATABASE STORE 99

In this file, we see that we left the URL encoded hyperlink incomplete. Specifically,
we did not set a value for cart_id. We simply left it dangling. However, the script is
prepared for that and is actually looking for the cart_id= flag.

As it is going through the file, preparing it to send to the Web browser, it
checks to see if it finds that flag. If it does, it substitutes the incomplete phrase
cart_id= with cart_id=[THE ACTUAL CART VALUE] using the regular
expression. Thus, every hyperlink within the store zzust have the cart_id= flag.

Defining Products with the Database
Definition Variables and the Datdafile

When the customer clicks on a link for a product page such as Numbers, the
script must search through the data file and dynamically generate a products
page with the appropriate items and the HTML <FORMS> code necessary for
the customer to order those products. In essence, the script must dynamically
generate the HTML product pages discussed in Chapter 3.

However, because the script generates the Name values for all the product
input fields, the Database store administrator need not go through the process
of coding all the Name attributes for products. That is, no HTML product
pages need be created. Instead, she must prepare a data file and describe each
field in the setup file so that the script can do it by itself.

Let us first look at the data file. A data file, again, is a simple flatfile ASCII
file which has pipe delimited fields and newline separated rows. Below is an
example:

I D Cat egory| Price| Description| | nage

1| Vowel | 10. 98| Al ~I t ~I M5 SRC = ~qq~Il mages/ a. gi f ~qq~~gt ~
2| Vowel | 10. 98| E| ~I t ~I M5 SRC = ~qq~Il mages/ e. gi f ~qq~~gt ~
3| Cons| 11. 98| T| ~I t ~I M5 SRC = ~qqg~I| mages/t. gi f ~qg~~gt ~
4] Nunber | 13. 98| 1| ~I t ~| M5 SRC = ~qqg~I mages/ 1. gi f ~qq~~gt ~

There are a few important things to note about a data file.

First, every data file is a set of standardized items with separate fields in a
predictable order. Notice that in every item above, the price is the third field.
The standardization of fields is essential. If you misplace fields, the script will

not know how to display your items when it generates product pages. Thus,
even blank fields must be defined. For example, if there was no description
associated with the number 1 above, you would still have a row that looked like

the following:
4| Nunber | 13. 98| | ~I t ~| M5 SRC = ~qg~I nages/ 1. gi f ~qg~~gt ~

The field would still be in the data row, it would just be blank.

Second, several special tags must be used to represent characters which
may cause trouble within your HTML code (specifically characters used in the
HTML code itself). There are three in particular:

~qq~ represents a double quote mark (“), ~gt~ represents a greater than
symbol (>), and ~It~ denotes a less than symbol (<). The script knows how to
translate these when it uses them to display the customer’s cart but you must
encode them here so that they will not confuse the <INPUT> tag in which
they are embedded. After all, how would the browser interpret the following
NAME value?

<INPUT TYPE = “text” NAME = “<IM5 SRC = “Images/ 1.gi f">">

The extra quote marks and the greater than and less than symbols would be
too confusing for the Web browser to interpret!

Third, every row (item) is separated by a newline character. Thus, you may
not include a newline character within the data. However, this should not be a
problem since newline characters translate to a space in HTML. If you wished
to include a line break, you would use the
 tag.

Fourth, each item must be uniquely identifiable with some form of product
i.d. field. We must do this so that the script will have some absolute way of dif-
ferentiating items that it must display (specifically, how to apply options).

Finally, no pipe characters are allowed within the data because the pipe is
used as a field delimiter. If you included a pipe character in your data, it would
cause the script to incorrectly display your item.

Once we have created our data file, we must describe it for the script in the
setup file. That way the script will know how to define each product in the
HTML it must dynamically generate.

Focus oN THE DATABASE STORE

%db is an associative array that contains a mapping of your own customer
defined fields to the index number of the fields as they appear in the flatfile
database.

For example, in our sample data file above, we would create the following
associative array:

$db{“product _id"} = 0;
$db{ “product”} = 1;

$db{“price’} =2
$db{“nane”} =
$db{“i nage_url "}

W N

Remember, fields start counting at O.

NOTE

@sc_db_display_fields is an array containing the descriptive headers for
the fields in the database we wish to display to the user when they do a
query search. Notice that these headers need not include every field
defined in %database. You may display only some of the information
contained in the database row if you so desire. The array takes advantage of
the indexes defined in %database and each descriptive element in this
array corresponds to the index numbers in @sc_db_index_for_display.
@sc_db_index_for_display is an array containing the index numbers of
the db fields that correspond to the display_fields array. To access those
index numbers, we just utilize the %darabase associative array. There must
be one index number in this array for every descriptive element in
@sc_db_display_fields.

@sc_db_index_for_defining _item_id is an array containing the database
fields that correspond to the fields from the database that you wish to
associate with a customer’s cart when he or she selects that item for

purchase. These field values will be used to determine the fields that make

101

up each item row in the customer’s cart. If you do not put a database field
in this array, it won’t be put in the cart and will not be available for display
when customers view their carts. It is mandatory that the Price and
Options database fields become incorporated into the cart as these are used
for cart subtotal calculations.

$sc_db_index_of_price is an index to the field in the database that
contains the price. This setupvariable is used by the Web store to decide
how to calculate and display money. In the example above, this value would
be 2. Remember that even if you do not display price, it must be defined
here so that the script will be able to do subtotaling.
@sc_db_query_criteria is an array containing the criteria that can be used
to search on the database. This is a powerful search mechanism. Though
searching is discussed in greater detail in Chapter 5, we will touch on it
here as it relates to developing product pages on the fly. The array contains

pipe-delimited fields inside each list item. The fields are the following:
1. Form variable name This is the variable name which you want to associ-
ate with the products to display. For example, if you have the following
hyperlink for getting a product page:

then the form variable name would be product.

2. Index into the database that this criteria applies to This list corresponds to
the %db associative array in the same way that @db_index_for_display
does. Thus, if you want the product field to be searched by keyword, the
hyperlink variable would be product as above and the index into the
database would be 1 according to our sample %db associative array.

3. operator for comparison This field is used by the script to determine what
logical criteria to apply when searching the database. Possible values
include >, <, >=, <=, =, != (not equal),

and the operator is compared the following way:

formvari abl e CPERATCR dat abase fi el d_val ue

Focus oN THE DATABASE STORE 103

That is, item 1 above is the left-hand side of the operator and item 2

w_»

above is the right-hand side of the operator. Typically, we’ll use for

generating product pages since we will be searching by keywords.

4. data type of the field This field determines how the operator in (3) gets
applied to the data. Typically we will use the string comparison.

Perhaps some examples are in order. Typically, you just want to do a search
on a product category and include that search term within URLs in a

frontpage such as the following:

web_st ore. cgi ?pr oduct =Vowel s.

"To do so, we must set the form variable equal to the above (product), set
the second field equal to the field in the database corresponding to a
product name (for example, 1), set operator =, data type string to do a
keyword search that is case insensitive. Thus, @sc_db_query_criteria

would be equal to:

(“product| 1] = string”)

$sc_db_max_rows_returned is the maximum number of rows you will
allow to be displayed to the user as the result of a query. If the query gets
above this number, customers are presented with a message letting them

know that they need to narrow their query.

Cart Definition Variables

Now that we have gone to the trouble of defining our data file, it is time to
make it pay off. The Cart Definition variables will be used to index the product
information coming in to the script in the form of text field Name form data.
Let’s go through the cart definition for the sample data file proposed previously.

Given the structure of the data file and the value of:

@c_db_i ndex_for_defining_itemid

%cart must be

$cart{“quantity”} =0
$cart{“product _id"} =1
$cart{“cat egory”} =2
$cart{“price"} = 3
$cart{“i mage_| ocation”} = 4
$cart{“options”} = 5;

$cart{“price_after_options”} 6;

All other variables will depend upon utilizing these array elements.

Order Form Definition Variables

These variables will basically be the same for all versions of the Web store
regardless of whether they take their information from product pages or a data
file because they will all have the same order processing interface.

Store Option Variables

Of course the most basic variable definition for the Database store is
$sc_use_html_product_pages. The only way to dynamically generate prod-
uct pages is to set this variable to no. If it is set to yes, the script will look liek
the predesigned HT'ML product pages in the Html/Products subdirectory.

HTML Search Variables

Because we will use the search routines in the Database search library, we will
not need to worry about any of these variables. They are all specific to the
HTML store.

Error Message Variables

These variables are global for all versions of the Web store and have already
been discussed in sufficient detail.

Focus oN THE DATABASE STORE 105

Miscellaneous Variables

$sc_product_display_title is the title that you would like to appear on
your product pages. Unfortunately, one of the limitations of the Database
store is the inability to custom design titles.
$sc_product_display_header is the header HTML used to display
products in the database based implementation. Notice that we use %s to
substitute for any given product information. The script will substitute
product data for each product in place of the %s when the variable is

actually used.

<NOTE> There must be a %s for every item in @sc_db_index_for_display because those
elements will be what gets substituted for each %s in the order they are defined in the array.

$sc_product_display_footer is the footer for each product

$sc_product_display_row is the %s embedded product row variable.

Understanding Options

Options are unique characteristics that can be applied to a product. For exam-
ple, a basic T-shirt might come in black, blue, or green or small, medium, or
large. Options modify a generic product. We need a way to communicate to
the script what an option is, which item it belongs to, what effect it will have
on the base price of that item, and the value set by the customer. Figure 4.3
depicts a product page with options:

Th [se= Do fosiseds [oacn Jesnon moocs (b
J-| |!ﬂ| -‘u| |¥|=.|il:||l|
R e = --jm
[———] [T
PR
i Ba wredd snecarme . o AT S e
Aruil ks Cpaeae
' A Fuat, [Fomms Vo P P bl B
Cader
= Red
© Hhar j- 550
T Rl T Ty — o L b
bl
W Srmjuble L piwes
[Fanr [T =i Hem P o b ®]
Nl
F Red
T Ihe i* 550
o, thad i e b | il o et b il o
i — -
£ o1 seadeh e cou s wad
shacied By s g bl T T o Froripage |
ik Sl -
&l
B =

Figure 4.3 Product page with options.

The first part in this process is to make sure that we associate options with items
for sale in the data file. To do so, we will use a special database field with a specific
format. Here is an example row from the distributed version of the data file.

0010| Vowel s| 15.98| The letter A ~lt~I M5 SRC = ~qq~H ni /| nages/ a. j pg~qq~
ALI QN = ~qg~l eft ~qg~~gt ~| You got it, the world renowned |letter
“A’| 9CPTI ONeBpt i on. ht ni

Notice that the fifth field reads % %OPTION % %option.html. The special
way that options are denoted in the database is by using the format
% % OPTION % %filename in the data file. This string includes two important

pieces of information.

Focus oN THE DATABASE STORE

First, the string begins with % %OPTION% %. This is a flag that lets the
script know that it needs to deal with this database field as if the field were an
option. When the script sees the flag, the string will then look to the string fol-
lowing the flag to see which file the string should load. Thus, in this example,
the script would load the file option.html for display.

Why go through all the trouble? Basically, we need to create a system that will

handle large chunks of similar HTML code within the database. Options on product

memmml pOgieS are likely to be repeated fairly often. For example, every item in a database
might have an option like tape, CD, or LP. By creating one option.html file, we
could easily put all the code into one shared location and not worry about typing it

in for every single database entry.

The option file is opened and read and every line of the option file is appended
to the product when it is displayed and the file is closed again.

However, options files themselves have another important flag, the
% %PRODUCT _ID% % flag. Because options must be associated with the
items they modify and because you do not know in advance what those items will
be, you must let the script make this connection at run time. The connection is
achieved by the flag. The current product i.d. number will be substituted by the
script for the % %PRODUCT _ID% % flag, which is a mandatory tag contained
in all options files.

With the exception of this % %PRODUCT _ID% % flag, the option defini-
tions follow those in the HTML store. First you must associate options with the
items they modify. We make this connection by using the NAME argument of
the form tag that defines each option. Below is an example of using a Select
menu for options.

<P>Avai | abl e Opti ons<P>

Font: <SELECT NAME = “option| 1] 0001” >

<CPTI ON VALUE = “Ti mes New Ronan| 0. 00" >Ti mes New Rorman (No
char ge)

<CPTI ON VALUE
<CPTI ON VALUE
</ SELECT>

<P>

“Arial|1.50">Arial (+ $1.50)
“Chi cago| 2. 00" >Chi cago (+ $2. 00)

107

In this case, the NAME syntax breaks down as follows:

1. Option flag This flag tells the script that the incoming data is an option,
not an item. Thus, the first field in a pipe-delimited option Name value
will always be option just as item Name tags #/ways begin with item-.

2. Unique sequence number of the option Each item for sale may have several
options associated with it. It is essential that each gets its own number.
If item #0001 had all its options called option 10001, it would be impos-
sible to parse them separately. So we will name them uniquely such as
option | 110001 for color, option 1210001 for size, or option|3 10001
for brand name.

3. LD. of the item that the option is associated with Notice that this i.d. is the
same as what was used in the Name argument for the quantity text box
in a product field box. This is deliberate and essential. Options must be
associated with the items they modify. This is where we must use the
% %PRODUCT_ID% % flag.

Finally, notice that options also contain Values, which are two field pipe-delimited
lists containing an option description and an option price. The option descrip-
tion will be used for display in the user’s cart and the price option will be used
to modify the base price of an item.

The following is an example of using a radio button to create an option. It
uses the same naming conventions as the <SELECT> tag but is included here
for variety:

Col or:

<INPUT TYPE = “radi 0” NAME = “option| 2| 0001”
VALLE = “Red| 0. 00" CHECKED>Red

<INPUT TYPE = “radi 0" NAME = “option| 2| 0001”
VALUE = “Bl ue|.50">Bl ue (+ .50)

In other words, product number 0001 has two possible options. Font type is
option number 1 and color is option number 2. The customer may choose
from three font types. If she chooses Arial, $1.50 will be added to the base
price of the item. She can also order red or blue. If she chooses red, nothing
will be added to the base price of the item.

Focus oN THE DATABASE STORE

If this option modified the letter A discussed above, and a customer
ordered three As, all red with Arial font, the cart row would appear as follows:

3| 1] Vowel s| 10. 98| Al ~l t ~I M5 SRC = ~qq~H m /| mages/ a. j pg~qq~ ALI GN =
~qq~l eft ~qg~~gt ~| Arial 1.50, Red 0.00| 12.48|1

Below, for you to review, is the code for the sample option.html file:

<pP>
Avai | abl e Opti ons
<P>

Font :

<SELECT NAME = “option| 1| 9%84RCDUCT_| D86 >

<CPTI ON VALUE = “Ti mes New Roman| 0. 00" >Ti mes New Rorman (No charge)
<CPTION VALLE = “Arial|1.50">Arial (+ $1.50)

<CPTI ON VALLE = “Chi cago| 2. 00" >Chi cago (+ $2.00)

</ SELECT>

<P>

Col or:

<INPUT TYPE = “radi 0” NAME = “opti on| 2| 9%8#RCDUCT_| D84
VALUE = “Red| 0. 00" CHECKED>Red

<INPUT TYPE = “radi 0” NAME = “opti on| 2| %84RCDUCT_| D¥84
VALUE = “Blue|.50">Bl ue (+ $.50)

Summary

"To utilize the Database-based interface, you must satisfy several requirements.
First, you must modify the following variables in the Setup file as discussed
above:

$sc_htm _product _directory_path
$sc_data file_path
$sc_db_lib_path
$sc_options_directory path
$sc_store _front_path

109

@c_db_di splay_fields
@c_db_i ndex_f or _di spl ay
@c_db_i ndex_for_defining_an_item
$sc_db_i ndex_of _price
@c_db_query criteria
$sc_db_max_rows_ret ur ned
$sc_use_html _product _pages
$sc_product _di splay_title
$sc_product _di spl ay_header
$sc_product _di spl ay_f oot er
$sc_product _di spl ay_r ow

Second, any list of product pages that you create for navigation must be hard-
coded with the page and cart_id= flags for filtering.

Third, you must create an ASCII text file (flat file) database that includes
pipe-delimited database rows separated by the newline charcter. The fields of
this database must correspond to the db_index variables defined above.

Finally, options files must be created for any options that you wish to use to
modify products in your database. The options must be prepared for filtering
with the % %PRODUCT _ID% % flag and must be included as specially
flagged fields in the data file.

